
Loci-Stream
Release 2.1.9

Streamline Numerics, Inc.

Jul 03, 2025

CONTENTS

1 Introduction 1
1.1 Run Control File . 1
1.2 Grid File . 4
1.3 Execution Command . 4

2 Simulation of Laminar Incompressible Flows 7
2.1 Example Case: Karman Vortex . 7
2.2 Helpful Guidance . 10

3 Simulation of Laminar Compressible Flows 11
3.1 Example Case: Prandtl-Meyer Fan . 11
3.2 Helpful Guidance . 15

4 Simulation of Turbulent Flows 17
4.1 RANS Models . 17
4.2 DES Models . 18
4.3 Example Case: Backward Step . 21

5 Simulation of Cavitating Flows 27
5.1 Cavitation Model . 27
5.2 Control File Setup . 30
5.3 REFPROP Tabulation Utility . 33

6 Simulation of Combusting Flows with Flamelet Method 37
6.1 Flamelet Method . 37
6.2 Control File Setup . 37

7 Simulation with Overset Grids 41
7.1 Overset Method . 41
7.2 Overview of the method . 42
7.3 Control File Setup . 44
7.4 Creating the Overset VOG Mesh with Tags . 48
7.5 Known Issue with Overset Module & Hole Cutting . 48
7.6 Visualizing the iblank state of a simulation . 49

8 PIMPLE Module 53
8.1 PIMPLE Algorithm . 53
8.2 Control File Setup . 53

9 Porous Media Module 57
9.1 Armour Cannon Cady (ACC) Mesh Model . 57

i

9.2 Numerically Determined Resistance (NDR) Mesh Model . 58
9.3 Control File Setup . 58

10 Appendices 61
10.1 Appendix: Time Integration . 61
10.2 Appendix: Initial Conditions . 64
10.3 Appendix: Boundary Conditions . 68
10.4 Appendix: Inviscid Fluxes and Gradient Limiting . 75
10.5 Appendix: Equation Options . 77
10.6 Appendix: Linear Solvers . 79
10.7 Appendix: Output Data . 80
10.8 Appendix: Restarting Cases . 89
10.9 Appendix: Thermodynamic Data . 91
10.10 Appendix: Transport Properties . 97
10.11 Appendix: Velocity and Scalar Boundary Condition Specification 99
10.12 Appendix: Solving the Pressure-Correction Equation . 103
10.13 Appendix: Space-Time Interpolation Module . 104
10.14 Appendix: Non-Inertial Reference Frame . 107

11 Indices and tables 109

Bibliography 111

ii

CHAPTER

ONE

INTRODUCTION

The Loci-Stream code is a product of the coupling of a CFD flow solver (Stream) to an open-source parallel-computing
framework (Loci). Together the two components make up the Loci-Stream code. The Loci framework is a highly scal-
able framework that powers the Stream solver to run on large-scale machines with thousands of processors. Loci-Stream
is designed to take advantage of existing commercially available front-end technology (standard grid generators) and
back-end technology (post-processing software such as Tecplot, FieldView, EnSight etc.) which is relatively inexpen-
sive compared to proprietary pre-processing and post-processing software provided by the major CFD vendors. The
diagram below illustrates how typical users interact with Loci-Stream during a simulation workflow.

Loci-Stream is a pressure-based finite-volume solver that operates with generalized unstructured meshes. Some of the
major simulation capabilities include the following:

• Incompressible flows

• Compressible flows with shock, rarefaction, and expansion waves

• Turbulent flows using RANS, DES, and LES turbulence closure methods

• Cavitating flows using REFPROP tabulated fluids

• Combusting flows using finite-rate chemistry and flamelet-based tabulation methods

• Volume-of-fluid (VOF) simulations with multiple liquid materials

• Lagrangian particle simulations

• Generalized moving mesh simulations with overset grids

There are two files that are required for running a simulation: a grid file (.vog extension) and a run control file (.vars
extension). The grid and control files are keyed to the case name which is supplied to the execution command. The
following sections provide some basic information about these data files.

The general philosophy of this user manual is to teach by example with a set of examples that are sequentially more
complex. Each new example introducing another layer of functionality in Stream. As such the earlier portions of the
manual will contain the most detail and discussion of the details of using Stream, with subsequent sections relying on
the user having read through the previous sections and building on that knowledge base.

1.1 Run Control File
The run control file contains all the input variables required to specify a simulation. The run control file sample in this
section illustrates a lid-driven cavity simulation, where flow in a 2-D cavity is driven by a sliding lid. All variables in
the run control file must be located within a single pair of squiggly brackets {}. Other than this constraint, there are
no constraints on the location or order of the variables in the file. Generally, however, it is useful to keep the variables
arranged in some logical groupings as shown in the run control file example so that information can be easily located.
Detailed explanation of the input variables in each of the groupings can be found in later sections of this guide. Note
that in general, one can include comments throughout the run control file using the // characters. All file contents
located between the // and the end of the line will be ignored by the file parser.

1

http://web.cse.msstate.edu/~luke/loci/index.html
https://sourceforge.net/projects/loci-framework/

Loci-Stream, Release 2.1.9

Fig. 1: The organization of the Loci-Stream code.

2 Chapter 1. Introduction

Loci-Stream, Release 2.1.9

The run control file variables that are required for a simulation are governed by the hierarchy of options that are selected.
Some options will require a particular set of variables to specified, whereas other options may have different variables
that need to be specified. This hierarchy includes elements such as the compressibility of the simulation, the presence of
combustion or cavitation, the numerical methods selected to solve the governing equations, the forms of the governing
equations, and the models used in the governing equations.

Listing 1: Sample run control file for lid-driven cavity flow

// Cavity flow, Re=1000.
{
// Grid file information.
grid_file_info: <file_type=VOG,Lref=1 m>

// Boundary condition information.
boundary_conditions:
<
BC_1=noslip, BC_2=noslip, BC_3=noslip, // left, right, bottom walls
BC_4=incompressibleInlet(v=-1.0 m/s), // lid
BC_5=symmetry,BC_6=symmetry // symmetry boundaries
>

// Initial condition.
initialCondition: <rho=1.0 kg/m/m/m,v=0.0,p=0.0>

// Thermodynamic and transport properties.
chemistry_model: air_1s0r
transport_model: const_viscosity
mu: 0.001

// Flow properties.
flowRegime: laminar
flowCompressibility: incompressible

// Time integration.
timeIntegrator: BDF
timeStep: 1.0e+30
numTimeSteps: 1001
convergenceTolerance: 1.0e-30
maxIterationsPerTimeStep: 1

// Fluxes and gradient limiting.
inviscidFlux: SOU
limiter: none

// Equation options.
momentumEquationOptions: <linearSolver=SGS,relaxationFactor=0.7, maxIterations=5>

pressureCorrectionEquationOptions: <linearSolver=PETSC, relaxationFactor=0.1,␣
→˓maxIterations=20>

// Output.
print_freq: 100
plot_freq: 100
restart_freq: 1000

(continues on next page)

1.1. Run Control File 3

Loci-Stream, Release 2.1.9

(continued from previous page)

}

1.2 Grid File
The only grid file format currently fully supported by Stream is the volume grid format (.vog extension). The only
means of obtaining a grid in this format is to use the translators provided in the Loci distribution. These can be found
in the /bin directory within the Loci installation directory.

Table 1: Translators for generation of .vog files

Grid Format Translation Procedure
CFD++ cfd++2xdr → xdr2vog
Cobalt Solutions cobalt2vog
Fluent fluent2vog
Plot-3D plot3d2vog
SolidMesh/AFLR3 ugrid2vog

The table above shows some of the existing translators that are available, and the command used to produce a .vog
file from the input grid file. As an example, if the AFLR3 mesh generator was used to generate a volume mesh, one
would have a file called either case_name.ugrid or case_name.b8.ugrid, depending on whether the file was output in
ASCII or binary form. To translate the file, one would issue the following command (assuming the grid was generated
in units of inches):

ugrid2vog -in case_name

Following the completion of the translation, one should see the file case_name.vog in the directory where the com-
mand was issued. Note that while the grid may be generated in any units, upon translation, the internal units of the
coordinates are in meters within the .vog file. All the translators shown in the table above require the units of the input
grid so that coordinates can be scaled to meters for the output grid.

1.3 Execution Command
Below is an example command to run Stream within a Linux environment.

mpirun -np 10 stream --scheduleoutput -q solution case_name >>&run.log &

A breakdown of the components of the command above is as follows:

• mpirun -np 10 stream: Execute stream in parallel using 10 processes. The number of processes to use in
executing the computation is specified with the -np option. The number of processes that can be used depends
on the size of the grid being used. On typical high-performance computing (HPC) systems, Stream exhibits
excellent scalability down to about 5000 grid cells per process. Thus, for a grid of a million cells, one would
typically use no more than 200 processes.

• --scheduleoutput: The schedule file is a text-based file that contains the actual series of rules that are being
executed by Stream. For single-process runs, this file is named .schedule, and will appear in the /debug
directory if the --scheduleoutput argument is included on the command line. For multi-process runs, a series
of files named .schedule-* is generated, where the wildcard represents the process number(starting from
0). The schedule files are not typically of concern to the user during normal code usage, however, if a problem
occurs, these files can be helpful to knowledgeable users in determining the cause of the problem.

• -q solution: The query value is passed to the code using the -q option on the command line. While other
queries are possible with Stream, in practice, one will always pass the value solution, which indicates to the
code that one wants the complete flow simulation solution.

4 Chapter 1. Introduction

Loci-Stream, Release 2.1.9

• >>& run.log &: Stream writes out information to both standard-output and, should an error occur during code
execution, to standard-error. This information can be redirected to a log file for permanent reference using the
syntax >>& before the name of the log file on the command line. With this syntax, the file run.log will be
created if it is not already present. If the file is already present, new information will be appended to the end of
the existing run.log file. This is useful when conducting a restart so that the entire history of the run may be
contained in a single file. If one uses the alternate syntax >&, any existing log file of the specified name will
be deleted and a new log file created, thus destroying the information in the previous log file.

1.3. Execution Command 5

Loci-Stream, Release 2.1.9

6 Chapter 1. Introduction

CHAPTER

TWO

SIMULATION OF LAMINAR INCOMPRESSIBLE FLOWS

The Stream solver is exceptionally suited for incompressible flows due to the use of a pressure-based solution frame-
work. The incompressible flow assumption is appropriate for flows with low Mach number in which the density varia-
tion with pressure is minimal.

2.1 Example Case: Karman Vortex
Consider the case of an incompressible laminar viscous flow of water around a cylinder. Details about this case as well
as the grid and run control files can be found on our website: https://www.snumerics.com/karman-vortex-example.
In this example, a flow moving at 2.1930 𝑚/𝑠 with a density of 1000 𝑘𝑔/𝑚3 passes over a cylinder and causes a
time-dependent shedding pattern of vortices behind the cylinder. This case illustrates the physical phenomenon called
a Karman vortex street. A schematic of the geometry and boundaries of the case is shown in the figure below.

Fig. 1: Domain diagram for the Karman vortex case.

The run control file used for this simulation is shown below.

7

https://www.snumerics.com/karman-vortex-example

Loci-Stream, Release 2.1.9

Listing 1: Sample run control file for the Karman vortex case.

{
// Grid file information.
grid_file_info: <file_type=VOG, Lref=1 m, pieSlice>

boundary_conditions: <
Inlet=incompressibleInlet(v=2.1930 m/s),
Outlet=fixedPressureOutlet(p=1 Pa),
Walls=slip,
Particle=noslip,
BackWall=symmetry,
FrontWall=symmetry
>

// initial conditions in nozzle
initialCondition: <rho=1000 kg/m^3, p=1 Pa, v=0.0 m/s>

// Flow properties
flowRegime: laminar
flowCompressibility: incompressible

// Transport properties
transport_model: const_viscosity
mu: 8.77205e-4

// Time-stepping (timeIntegrator[Euler,PISO])
timeIntegrator: BDF2
timeStep: 1.0e-2
numTimeSteps: 501
convergenceTolerance: 1.0e-30
maxIterationsPerTimeStep: 30

// InviscidFlux [FOU,SOU,Roe(compressible only)]
inviscidFlux: SOU

// Gradient limiting.
limiter: venkatakrishnan

// HYPRE solver parameters
linearSolverTolerance: 5.0e-02
hypreSolverName: AMG

// Momentum equation (linearSolver[SGS,PETSC],0.0<relaxationFactor<1.0)
momentumEquationOptions: <linearSolver=SGS, relaxationFactor=0.7, maxIterations=3>

// Pressure equation
pressureCorrectionEquationOptions:<linearSolver=HYPRE, relaxationFactor=0.2,␣
→˓maxIterations=20>
pressureBasedMethod: SIMPLEC

// Printing, plotting and restart parameters.
(continues on next page)

8 Chapter 2. Simulation of Laminar Incompressible Flows

Loci-Stream, Release 2.1.9

(continued from previous page)

print_freq: 10
plot_freq: 1
plot_output: pResidualTT
restart_freq: 200
}

2.1.1 Boundary Conditions
The boundary condition used for the inflow in this case is the incompressibleInlet. Only the velocity on this
boundary needs to be specified. The velocity specification can take many forms, many of which are described here. A
velocity directed into a domain normal to a boundary can be specified by simply providing the v= input option.

Inlet=incompressibleInlet(v=2.1930 m/s)

For incompressible simulations the only boundary condition that can be used is the fixedPressureOutlet. A fixed
static pressure along the boundary is set in this case. Other options for this boundary condition are detailed here. The
boundary is intentionally placed far from the cylinder in a location where specifying a fixed pressure will not adversely
affect the flow near the cylinder.

Outlet=fixedPressureOutlet(p=1 Pa)

The meaning of pressure in incompressible flows is not intuitively obvious. The governing equations for incompressible
flow do not demand the specification of a pressure reference; only the gradient of the pressure is of importance. How-
ever, when using the fixedPressureOutlet boundary condition, the reference pressure will be set at the boundary
using the value provided from the p= input option.

The boundary condition on the cylinder surface is set to noslip to enforce the zero-velocity condition. Since we are not
concerned with the boundary layer effects on the upper and lower walls, the boundary condition for these boundaries
is set to slip. The front and back (going into the page) boundaries are set to symmetry to model zero variation in the
flow field in the z-direction.

2.1.2 Initial Conditions
In this example the initial flow is a quiescent flow of water with a pressure of 1 Pascal and a density of 1000 𝑘𝑔/𝑚3 ,
which is specified as follows:

initialCondition: <rho=1000 kg/m^3, p=1 Pa, v=0.0m/s>

For incompressible simulations one should always initialize the pressure in the domain to the same value as the
fixedPressureOutlet to prevent the development of large velocities at the boundary due to a discontinuous change
in the pressure level.

2.1.3 Numerics
The second-order accurate timeIntegrator option BDF2 is chosen over the first-order accurate BDF option for this
simulation since we are concerned with time accuracy. The BDF2 time-stepping scheme achieves time-accurate results
at much larger timesteps compared to the BDF scheme. The second-order inviscidFlux option SOU selected here is
generally preferred over FOU due to its lower numerical dissipation characteristics and should always be used if possible.
Here we are using the Venkatakrishnan limiter to limit the second order convective fluxes; more information about the
flux limiters can be found here.

For incompressible flows, only the momentum and pressure-correction equations need to be solved. The specification
for the momentum equation options is shown below. Here we are using the symmetric Gauss-Seidel (SGS) method to
solve the linear system. A relaxation factor of 0.7 has been chosen, which indicates the 70% of the current iteration
solution and 30% of the previous iteration solution will be averaged and used as the new value. Lower values for
the relaxationFactor can be used if numerical stability issues arise. The maxIterations option specifies the

2.1. Example Case: Karman Vortex 9

Loci-Stream, Release 2.1.9

maximum number of iterations to use in the linear solver. For the SGS solver, the maximum number of iterations is
always used. Typically, one should not use more than 5 iterations in the linear solver for the momentum equation.

momentumEquationOptions: <linearSolver=SGS, relaxationFactor=0.7, maxIterations=3>

Options for pressure-correction equation are shown below. The HYPRE linear solver is generally the preferred linear
solver for the pressure-correction equation due to the Poisson-like nature of this equation. Typically, more iterations
are required for the pressure-correction equation than the other governing equations.

pressureCorrectionEquationOptions:<linearSolver=HYPRE, relaxationFactor=0.2,
maxIterations=20>

Stream supports both the SIMPLE and SIMPLEC pressure-based methods, the selection of which is made using the
pressureBasedMethod variable.

pressureBasedMethod: SIMPLEC

2.1.4 Miscellaneous
In Stream, the method of constraining a flow to be two-dimensional is to provide the pieSlice input in the
grid_file_info section. This disables the z-component of the equations. It is important to note that this op-
tion presumed a grid that exists in an x-y plane.

2.2 Helpful Guidance
• Residuals are output to the log file (lines that start with R:). These lines contain the residuals for each of the

governing equations being solved. See the following Appendix for more information. A two to three order
of magnitude drop in the residuals from the starting to the ending iteration within every timestep is generally
considered acceptable for a time-accurate simulation.

• The table below shows the field variables that are available for output in laminar incompressible flow simulations.
Default variables are output automatically and do not need to be specified in the `plot_output line in the run
control file. The variables pResidualTT and vResidualTT shown in the table are useful for gauging solution
convergence. A discussion of the principle behind the turn-over time can be found here.

Table 1: Field Variable Output for Laminar Incompressible Flows

Variable Description Default
laminarViscosity Fluid viscosity No
pg Gauge pressure Yes
pPrime Pressure-correction No
pResidual Pressure-correction eq. residual No
pResidualTT Pressure-correction eq. turn-over time No
r Density Yes
v Velocity Yes
vort_mag Vorticity magnitude No
vResidual Velocity eq. residual No
vResidualTT Velocity eq. turn-over time No

10 Chapter 2. Simulation of Laminar Incompressible Flows

CHAPTER

THREE

SIMULATION OF LAMINAR COMPRESSIBLE FLOWS

The Stream solver can simulate flows where compressible effects are present, including flows with shock waves. Com-
pressibility of a flow is usually categorized by observing a change of the density of a fluid as a response to a change
in the pressure. Compressibility should be considered where flows may have Mach numbers greater than 0.3 typically.
Another class of flows that should be solved by considering compressibility effects are Rayleigh-type flows where heat
transfer through boundaries is considered.

For compressible flows without shock waves, the user should use the FOU and SOU flux schemes. For flows with shock
waves, the SLAU flux scheme is available. Details about the flux schemes that are available in are detailed here. The
run control file specification mostly remains the same from incompressible cases. An additional data file, called a
chemistry model file(.mdl), is required for compressible flows. See the following Appendix contains more information
about the contents of a chemistry model file and information about how to create one.

3.1 Example Case: Prandtl-Meyer Fan
Consider the case of a compressible laminar inviscid flow around a corner as shown below. For this case, the fluid in
the domain is air. Details about the problem and grid and run control file can be found on our website. In this example,
a flow of air at a temperature of 550 Rankine (305 Kelvin) moving at Mach 2.5 flows past a bend in the geometry of
the domain. The supersonic flow produces a Prandtl-Meyer expansion fan near the corner in response to the bend.

A sample run control file used to run the Prandtl-Meyer simulation is shown below.

Listing 1: Sample run control file for the Prandtl-Meyer expansion fan
problem.

{
grid_file_info: <file_type=VOG, Lref=1m, pieSlice>

boundary_conditions: <
Inlet=supersonicInlet(v=2874 ft/s, p=12 psia, T=550 R),
Outlet=extrapolatedPressureOutlet,
Wall=slip,
Top=slip,
BC_5=symmetry(),
BC_6=symmetry()
>

initialCondition: <T=550 R, p=12 psia, v=2874.0322 ft/s>

// Flow properties
flowRegime: laminar
flowCompressibility: compressible

(continues on next page)

11

https://www.snumerics.com/prandtl-meyer-flow-example

Loci-Stream, Release 2.1.9

Fig. 1: Domain diagram for the Prandtl-Meyer expansion fan problem.

(continued from previous page)

// Gas Model & Transport Properties
chemistry_model: air_1s0r
transport_model: const_viscosity
mu: 1.0e-15
kcond: 1.0e-15

// Time-Stepping
timeIntegrator: BDF2
timeStep: 1.0e-5
numTimeSteps: 10001
convergenceTolerance: 1.0e-30
maxIterationsPerTimeStep: 30

// Fluxes
inviscidFlux: SOU
limiter: venkatakrishnan

hypreSolverName: GMRES
linearSolverTolerance: 1.0e-02

// Momentum equation (linearSolver[SGS], 0.0<relaxationFactor<1.0)
momentumEquationOptions: <linearSolver=SGS,relaxationFactor=0.5,maxIterations=5>

(continues on next page)

12 Chapter 3. Simulation of Laminar Compressible Flows

Loci-Stream, Release 2.1.9

(continued from previous page)

// Pressure equation (linearSolver[SGS, PETSC, HYPRE], 0.0<relaxationFactor<1.0)
pressureCorrectionEquationOptions: <linearSolver=HYPRE, relaxationFactor=0.1,␣
→˓maxIterations=50>
pressureBasedMethod: SIMPLEC

// Energy equation (linearSolver[SGS], 0.0<relaxationFactor<1.0)
energyEquationOptions: <linearSolver=SGS, relaxationFactor=0.3, maxIterations=5,␣
→˓form=temperature>
TclipMax: 2000.0

// Printing, plotting and restart parameters.
print_freq: 100
plot_freq: 500
plot_output: pResidualTT
restart_freq: 1000
}

3.1.1 Boundary Conditions
The boundary condition used for the inflow in this case is the supersonicInlet. This boundary condition is used for
flows with Mach numbers greater than one. The velocity, pressure, and temperature must be specified for this inlet. The
velocity specification v= assumes that the velocity is directed along the normal vector pointing into the domain. See
the following Appendix for more information about all the ways to provide specifications to this boundary condition.

Inlet=supersonicInlet(v=2874.0322 ft/s, p=12 psia, T=550 R)

For supersonic flows, the location of the outlet boundary can be much closer to the area of interest because disturbances
near the boundary do not travel back into the domain due to the supersonic nature of the flow. The outlet boundary
is located just downstream of the corner in this example and is an extrapolatedPressureOutlet. This boundary
condition is a zero-gradient boundary that is permissible in the presence of flows that are supersonic.

Outlet=extrapolatedPressureOutlet

All solid surfaces are set to the slip boundary condition because of the inviscid nature of the flow. The front and back
(going into the page) boundaries are set to symmetry to model zero variation in the flow field in the z-direction.

3.1.2 Initial Conditions
In this example the initial flow is air in motion with a velocity of 2874 ft/s. The pressure is 12 psia and the temperature
is 550 Rankine. These initial conditions are specified as follows:

initialCondition: <v=2874 ft/s, p=12 psia, T=550 R>

English units are used in this example to show that different unit types are supported for many of the inputs. All inputs
are converted to S.I. units within the code.

3.1.3 Transport Properties
For this case, the fluid is air, and the viscosity is set to a small value to approximate an inviscid flow. The thermal
conductivity is also provided for use in the energy equation.

transport_model: const_viscosity

mu: 1.0e-15

3.1. Example Case: Prandtl-Meyer Fan 13

Loci-Stream, Release 2.1.9

kcond: 0.0265

A specification of the species that are present in the domain is needed when running compressible flows. This provides
information about the equation of state to use for the species. The species information for the air is encoded in the
chemistry model file (.mdl), which has its specification provided here. The contents of the file are reproduced below
for ease of replicating this case.

Listing 2: The .mdl file for the air species used in the Prandtl-Meyer
expansion fan case.

// Model for Air as an ideal gas
species = {
_Air = < m=28.89, n=2.5, href=0, sref=0, Tref=298.0, Pref=10000.0, mf=1.0 >;
};
reactions = {
};

3.1.4 Numerics
The first-order accurate BDF time-stepping scheme is used for this case because we are primarily interested in the
steady-state behavior of the expansion fan within the domain. The second-order inviscidFlux option SOU are used
is used because of its low numerical dissipation characteristics. For supersonic flows with shockwaves, the SOU flux
scheme is not appropriate because it is unstable in the presence of discontinuities in a flow, but it is ok for this case
because there is only a smoothly varying isentropic expansion fan in the domain for this case.

The momentum, pressure correction, and energy equations need to be solved for compressible laminar flows. The
specification for the momentum equation options is shown below. Here we are using the symmetric Gauss-Seidel (SGS)
method to solve the linear system. A relaxation factor of 0.5 has been chosen, which indicates the 50% of the current
iteration solution and 50% of the previous iteration solution will be averaged and used as the new value. Lower values
for the relaxationFactor can be used if numerical stability issues arise. The maxIterations option specifies the
maximum number of iterations to use in the linear solver. For the SGS solver, the maximum number of iterations is
always used. Typically, one should not use more than 5 iterations in the linear solver for the momentum equation.

momentumEquationOptions: <linearSolver=SGS, relaxationFactor=0.5, maxIterations=5>

Options for pressure-correction equation are shown below. The PETSC linear solver is used in this case to show that
other linear solvers are supported. Typically, more iterations are required for the pressure-correction equation than the
other governing equations.

pressureCorrectionEquationOptions:<linearSolver=PETSC, relaxationFactor=0.5,
maxIterations=5>

For compressible flows Stream supports three forms of the energy equation: a temperature form, a total energy form, and
a total enthalpy form. For this case, the temperature form of the energy equation is used by specifying form=temperature
in the energyEquationOptions. The other forms of the energy equation are discussed in the Appendix.

energyEquationOptions: <linearSolver=SGS, relaxationFactor=0.3, maxIterations=5,
form=temperature>

3.1.5 Miscellaneous
In Stream, an inviscid simulation can be approximated by setting the transport_model variable to const_viscosity
and providing a very small value of the viscosity, as was done in this example.

14 Chapter 3. Simulation of Laminar Compressible Flows

Loci-Stream, Release 2.1.9

3.2 Helpful Guidance
• The table below shows additional field variables that are available for output in laminar compressible flow sim-

ulations. These are in addition to the field outputs that are available for the laminar incompressible simulations.
Default variables are output automatically and do not need to be specified in the plot_output line in the run
control file. The variables pResidualTT and vResidualTT shown in the table are useful for gauging solution
convergence. A discussion of the principle behind the turn-over time can be found here.

Table 1: Field Variable Output for Laminar Compressible Flows

Variable Description Default
a Speed of sound Yes
cfl CFL number No
cp Specific heat No
kineticEnergy Kinetic energy No
hResidual Energy eq. residual No
hResidualTT Energy eq. turn-over time No
kconduct Thermal conductivity No
mix Species mass fractions Yes
t Temperature Yes

3.2. Helpful Guidance 15

Loci-Stream, Release 2.1.9

16 Chapter 3. Simulation of Laminar Compressible Flows

CHAPTER

FOUR

SIMULATION OF TURBULENT FLOWS

In this section, we describe the capabilities within Stream for simulating turbulent flows. Stream contains a variety of
turbulence models that are suitable for both steady-state and unsteady turbulent flow analysis. Here we assume that the
user has a sufficient understanding of the terminology used in the description of turbulent flows and knowledge of the
various analytical turbulence closure models that are employed in the CFD field. For a more comprehensive description
of the governing equations of turbulent flow and the specific turbulence models used in Stream, see [Pope2000] as well
as the Stream Theory Manual.

4.1 RANS Models
Stream contains a selection of Reynolds-Averaged Navier-Stokes (RANS) turbulence models from both the k-epsilon
and k-omega families. The governing assumptions behind the derivation of these models generally limits their accu-
rate predictive capability to relatively benign turbulent flow scenarios in which flows remain predominantly attached
to the walls of the domain (no separation). Mean-flow properties of separated flows (such as drag coefficients) can be
accurately predicted, including for flows with massive separation under certain conditions (i.e., post-transition, super-
critical turbulence), however, the prediction of intermittent and transitional behavior of flows cannot be predicted with
these models. The paper of Hart [Hart2016] contains a detailed comparison of RANS turbulence models and Scale
Resolving Simulation (SRS) models (which includes the DES and LES models to be discussed later in this chapter),
regarding their predictive capability for massively separated flow. This information may be of use in helping users
decide whether RANS models are applicable to their problems of interest.

One major addition to the run control file for turbulent flow is the variable turbulenceEquationOptions. This
variable is used for specifying the turbulence model, the relaxation and linear solver parameters for the turbulence
equations and any other auxiliary input required by the turbulence models. Turbulence model selection is made using
the model option. The table below shows the allowable values for this option for RANS simulations.

Freestream values for the turbulence variables may be set using the kFreestream, omegaFreestream and
epsilonFreestream variables. These variables are commonly set to the same values that have been specified at
the inlet boundary and have default values of 1.0e-08, 10.0 and 10.0, respectively. These variables are only used to
ensure that the computed turbulence values remain realizable (i.e. k, omega, epsilon > 0) and will have no impact on
the final solution unless clipping of the turbulent variables is occurring.

17

Loci-Stream, Release 2.1.9

Table 1: RANS Turbulence Model Options for
turbulenceModelOptions variable

Model Family Model Names Notes
k-𝜖 • StandardKE

• RealizableKE
• StandardKE from Launder &

Spaulding [LaSp1974]
• RealizableKE model of

Shih et. al. [SLSY1995]

k-𝜔 BSL • menterBSL
• menterBSL_m
• menterBSL_V
• menterBSL_Vm
• menterBSL_KL
• menterBSL_KLm

• menterBSL is the original
1994 Baseline Model of
Menter

• For other variants of the
Menter baseline models, see
NASA BSL

k-𝜔 SST • menterSST
• menterSST_m
• menterSST_V
• menterSST_Vm
• menterSST_KL
• menterSST_KLm

• menterSST is the original
1994 Shear Stress Transport
Model of Menter

• For other variants of the 2003
Menter shear-stress transport
model, see NASA SST

k-𝜔-SST-2003 • menterSST2003
• menterSST2003_m
• menterSST2003_V
• menterSST2003_Vm
• menterSST2003_KL
• menterSST2003_KLm

• menterSST2003 is the im-
proved 2003 Shear Stress
Transport Model of Menter

• For other variants of the
Menter shear-stress transport
model, see NASA SST

4.2 DES Models
While the RANS models described above may be used in an unsteady mode with small time step to simulate complex
turbulence flows with separation and bluff-body-type recirculation zones, they are generally found to be lacking for these
flows. Typically, in zones of separation, one expects to find a collection of eddies that span a range of length scales,
from the largest energy-containing eddies to the smallest dissipative eddies of the turbulence cascade. However, due to
the modeling assumptions made during closure of the ensemble-averaged equations, solutions for separated flows are
almost universally found to exhibit a time-averaged character, whereby small-scale eddy content is severely diminished
or even completely absent, and the point-by-point frequency spectrum is devoid of any chaotic or high-frequency
content. To provide a remedy for this deficiency, Stream provides several turbulence models in the Detached-Eddy
Simulation (DES) family, which can be used to simulate turbulent flows with significant separation. While the analytical
formulation these models is not based on the strict filtering process used in the traditional Large-Eddy Simulation
(LES) approach, these DES models provide turbulent solutions that are similar in character to LES models and are
thought of most conveniently as hybrid models that blend the characteristics of LES in separated an interior region
while transitioning to traditional Unsteady RANS (URANS) behavior in the near-wall region. A great discussion about
detached eddy simulation methodology can be found here.

18 Chapter 4. Simulation of Turbulent Flows

https://turbmodels.larc.nasa.gov/bsl.html
https://turbmodels.larc.nasa.gov/sst.html
https://turbmodels.larc.nasa.gov/sst.html
https://wmles.umd.edu/hybrid-les-rans-models/des/

Loci-Stream, Release 2.1.9

4.2.1 A Brief DES History
A brief history of DES family of models is presented below for readers who may be interested in the evolution of the
DES models.

4.2. DES Models 19

Loci-Stream, Release 2.1.9

Table 2: History of DES Family of Models

Reference Main Features Comments
Spalart 1997

• Original motivation for DES
• Basic equations (with 𝐶𝑑𝑒𝑠

constant undetermined)
• Two-dimensional examples.

• First paper on DES concept
• In the context of Spalart-

Almaras (SA) model only

Shur 1999
• First true 3D application of

DES
• Calibration of 𝐶𝑑𝑒𝑠

• Successful prediction of air-
foil forces

• Usage of DES in 3D

Travin 2000
• First DES with grid refine-

ment
• Fair agreement on the drag

crisis
• Refined definition of DES

Nitkin 2000
• Discussion of DES for wall

modeling inside LES
• One of the first attempts of

employing DES as an LES us-
ing wall modeling

Strelets 2001
• Wide range of applications,

including models other than
Spalart-Almaras.

• First SST-DES formulation

Menter and Kuntz 2002
• Demonstrate grid-induced

separation
• Propose shielding for SST

model to “preserve RANS
mode” or “delay LES mode”
in boundary layer by using
blending functions 𝐹1 or 𝐹2

• First demonstration of Grid-
Induced Separation (GIS)
with DES

• They refer to it as “Zonal SST-
DES”

• Ambiguity in “shielding”
function - can use 𝐹1 or 𝐹2

→ Spalart 2006 improves this
• Provides motivation for the

DDES model of Strelets
(2006)

Spalart 2006
• Introduced Delayed DES

(DDES) to avoid grid-
induced separation (GIS)

• Coined the phrase Modeled-
Stress Depletion (MSD) and
showed it to be the cause of
GIS

• Use more generic shielding
function based on eddy vis-
cosity and wall distance (us-
ing parameter 𝑟𝑑 and function
𝑓𝑑)

• MSD results from insufficient
flow instabilities downstream
of the switch from the RANS
to the LES model formulation
=> the switch from the RANS
to the LES model inside wall
boundary layers is not desir-
able

• Applied to S-A model in this
paper

• But also applicable to SST
model (done in Gritskevich-
Menter 2012)

Shur 2008 & Travin 2006
• Improved DDES (IDDES)
• Combines DDES with an

improved hybrid RANS-LES
aimed at Wall-Modeled LES
(WMLES)

• Uses rather intricate blending
and shielding functions

• Has 2 branches: DDES and
WMLES

• Original DES results in a
strong Logarithmic Layer
Mismatch (LLM) between
the inner RANS and the outer
LES regions

• IDDES aims at a true WM-
LES capability: resolves the
LLM issue by using subgrid
length-scale which depends
not only on the grid spacings
but also on the wall distance

Gritskevich & Menter 2012
• Modifications to DDES and

IDDES for SST model
• SST-DDES: Recalibrated em-

pirical constants of DDES
(Spalart 2006 which was cal-
ibrated for S-A model) for the
SST model

• SST-IDDES: modified ID-
DES (of Shur 2008) which is
more suitable for SST model

• Can consider SST-IDDES as
a viable Wall-Modeled LES
(WMLES) which is valid in
the entire flow - boundary
layer, attached flow regions
and separated flow regions
→ cover only the inner-most
part of the boundary layer in
RANS mode and resolve most
of the turbulence inside the
boundary layer by LES

20 Chapter 4. Simulation of Turbulent Flows

Loci-Stream, Release 2.1.9

4.2.2 Activating DES Mode
To active DES mode in Stream, the user should provide an addition option in the turbulenceEquationOptions
options list of the form des=<ModelName>. An example is shown below.

turbulenceEquationOptions: <model=menterSST2003, des=IDDES2012, linearSolver=SGS,
relaxationFactor=0.5, maxIterations=5>

The table below shows the allowable values for the des option for running simulations with DES.

Table 3: DES Turbulence Model Selection for
turbulenceModelOptions variable

Model Value Description
DES2001 2001 Strelets DES model [Stre2001]
DDES Menter Delayed DES model [MeKu2002]
DDES2012 2012 SST-DDES model [GGSM2012]
IDDES2012 Improved 2012 SST-IDDES model [GGSM2012]

A recommended combination is the menterSST2003 turbulence model with the IDDES2012 des model. For cases that
experience numerical instability, try the DDES2012 des option.

4.3 Example Case: Backward Step
Consider the case of a compressible turbulent flow over a backward step as shown in Figure 8. For this case, the fluid
in the domain is air. Details about the problem and grid and run control file can be found on our website.

In this example a turbulent flow of air at around 537 Rankine (298 Kelvin) is moving at 41.7 m/s and it passes over
a sudden drop. This drop causes the flow to create a circulating region near the drop. The size and character of this
recirculation bubble is the subject of the backward step problem. The RANS solution of the flow field is what will be
solved for in this example.

Fig. 1: Domain diagram for the backward step problem.

When running turbulent simulations, most of the run control file inputs described in previous chapters remain the same,

4.3. Example Case: Backward Step 21

https://www.snumerics.com/2d-backward-step-tutorial

Loci-Stream, Release 2.1.9

with minor changes. Some additional input required for the specification of data needed for the governing turbulence
equations is required. A sample run control file used to run the backward step simulation is shown below.

Listing 1: Sample run control file for the backward step problem.

{
grid_file_info: <file_type=VOG, Lref=1m, pieSlice>

boundary_conditions: <
BC_1=noslip(adiabatic), //Upstream Bottom Wall
BC_2=noslip(adiabatic), // Top Wall
BC_3=subsonicInlet(T=537.0 R, v=41.7096 m/s, k=0.00097, omega=5091), //Inlet
BC_5=symmetry, //Backwall
BC_6=symmetry, // Frontwall
BC_13=noslip(adiabatic), // Bottom of Downstream section
BC_15=noslip(adiabatic), // Vertical Step Face
BC_22=fixedPressureOutlet(pMean=1.0 atm), // Outlet
>

initialCondition: <p=1 atm, T=537.0 R, v=41.7096 m/s, k=0.00097, omega=5091>

// Flow properties
flowRegime: turbulent
flowCompressibility: compressible

// Gas model.
chemistry_model: air_1s0r
transport_model: const_viscosity
mu: 2.498e-5
kcond: 4.175e-2

// Time-stepping
timeIntegrator: BDF
timeStep: 1e-3
numTimeSteps: 10001
convergenceTolerance: 1.0e-30
maxIterationsPerTimeStep: 30

// InviscidFlux
inviscidFlux: SOU
turbulenceInviscidFlux: SOU
limiter: venkatakrishnan

linearSolverTolerance: 1.0e-02

// Momentum equation (linearSolver[SGS,PETSC],0.0<relaxationFactor<1.0)
momentumEquationOptions: <linearSolver=SGS,relaxationFactor=0.5,maxIterations=5>

// Pressure equation
pressureCorrectionEquationOptions: <linearSolver=PETSC,relaxationFactor=0.1,
→˓maxIterations=50>
pressureBasedMethod: SIMPLEC

// Energy equation (linearSolver[SGS,PETSC],0.0<relaxationFactor<1.0)
(continues on next page)

22 Chapter 4. Simulation of Turbulent Flows

Loci-Stream, Release 2.1.9

(continued from previous page)

energyEquationOptions: <linearSolver=SGS,relaxationFactor=0.5,maxIterations=5,
→˓form=temperature>

// Turbulence equation
turbulenceEquationOptions: <model=menterSST2003, linearSolver=SGS, relaxationFactor=0.5,␣
→˓maxIterations=5>
kFreestream: 0.00097
omegaFreestream: 5091
eddyViscosityLimit: 10000

// Printing, plotting and restart parameters.
print_freq: 250
plot_freq: 2000
plot_output: a, pResidualTT, laminarViscosity, viscosityRatio, k, omega
restart_freq: 2000
}

4.3.1 Boundary Conditions
All boundary condition entries remain the same except for the inlet boundary, where one must now specify inlet values
for the turbulent kinetic energy, k, and either the turbulent dissipation, epsilon, or the specific turbulent dissipation,
omega. Since we are using a model in the k-omega family for this example, omega must be provided.

The boundary condition used for the inflow in this turbulent example is the subsonicInlet. This boundary condition
is like the one used for compressible flows with the addition of turbulence parameters. See the following Appendix for
more information about this boundary condition.

BC_3=subsonicInlet(T=537.0 R, v=41.7096 m/s, k=0.00097, omega=5091)

The boundary condition requires two turbulence parameters, k and omega`. The choice of turbulence inputs depends on
the model that is selected in the turbulenceEquationOptions variable. More details can be found in the Appendix
regarding the turbulenceEquationOptions variable. The outlet is a fixedPressureOutlet with a mean pressure
constraint set on it as shown below.

BC_22=fixedPressureOutlet(pMean=1.0 atm)

All solid surfaces are set to noslip(adiabatic) because of the viscous nature of the flow. The keyword adiabatic
must be passed to the noslip boundary condition for compressible flow simulations. More details on the noslip
boundary condition can be found in the following Appendix. The front and back (going into the page) boundaries are
set to symmetry to model zero variation in the flow field in the z-direction. A small section of the domain upstream
is set to symmetry near the inlet because the backward step is a canonical validation problem provided by the NASA
Langley turbulence modeling resource.

4.3.2 Initial Conditions
In this example the initial flow is a flow of air, already in motion, with a pressure of 1 atm, a temperature of 537 Ranine,
and a velocity of 41.7096 m/s, which is specified as follows:

initialCondition: <p=1 atm, T=537.0 R, v=41.7096 m/s, k=0.00097, omega=5091>

Depending on the turbulence model selected for the turbulenceEquationOptions like the options shown in the
RANS options table, the name of the turbulence variable provided in the initial condition will change (will either be
omega or epsilon).

4.3. Example Case: Backward Step 23

https://turbmodels.larc.nasa.gov/
https://turbmodels.larc.nasa.gov/

Loci-Stream, Release 2.1.9

4.3.3 Transport Properties
For this case, the fluid is air, and the viscosity and thermal conductivity are set to be constant values that are selected
to model the typical values for air at the temperature and pressure of the example case under consideration. The
const_viscosity value for the transport_model option allows for a single value of the viscosity and thermal
conductivity to be set, as shown below.

transport_model: const_viscosity

mu: 2.498e-5

kcond: 4.175e-2

A specification of the species is needed when running compressible flows. This provides information about the equation
of state to use for the species in the domain. The species information for the air is encoded in the chemistry model file
(.mdl) file for this case, whose specification format can be found here. The contents of the file are reproduced here for
ease of replicating this case.

Listing 2: The .mdl file for the air species used in the backward step case.

// Model for Air as an ideal gas
species = {
_Air = < m=28.89, n=2.5, href=0, sref=0, Tref=298.0, Pref=10000.0, mf=1.0 >;
};
reactions = {
};

4.3.4 Numerics
For turbulent flows, the user must set the value of the variable flowRegime to turbulent in the run control file.

flowRegime: turbulent

In Stream, the inviscid flux used for the turbulence equations may be set independently from the main inviscid flux
used for the momentum, energy, and species equations by using the turbulenceInviscidFlux variable. The default
value is SOU, which provides for the second-order upwinding of the independent variables k, omega and epsilon in
the convection term of the turbulence equations. To achieve second-order spatial accuracy, one should use a value of
SOU for both inviscidFlux and turbulenceInviscidFlux. Under certain extreme flow scenarios, convergence of
the system of equations may be difficult to obtain using second-order convective fluxes for the turbulence equations,
requiring one to downgrade to first-order upwinding by specifying a value of FOU for the turbulenceInviscidFlux
variable. This, however, has rarely been found to be needed in practice.

The first-order accurate BDF time-stepping scheme and the second-order inviscidFlux option SOU are used is used in
this example. BDF is used because the time-accurate evolution of the flowfield is not of interest, only the steady state
solution is desired.

The momentum, pressure correction, energy, and turbulence closure equations need to be solved for compressible
turbulent flows.

The new addition is the turbulenceEquationOptions which controls the turbulence model that is used as well as
the numerical controls for solving the turbulence closure equations.

turbulenceEquationOptions: <model=menterSST2003, linearSolver=SGS, relaxationFactor=0.5,
maxIterations=5>

The linear solver options are like the other governing equations that have been previously covered. All linear solvers
discussed(here) are supported for the value of linearSolver, however one should rarely need to use anything other than
the SGS solver.

24 Chapter 4. Simulation of Turbulent Flows

Loci-Stream, Release 2.1.9

This example uses the MenterSST2003 turbulence model, which is a Reynolds Averaged Navier-Stokes (RANS) model,
because that is what the NASA validation example called for.

4.3.5 Output Variables
The table below shows additional field variables that are available for output in turbulent flow simulations. NOTE: The
variables kClip, omegaClip and epsilonClip are boolean variables that are assigned a value of 0 for no clipping and
a value of 1.0 when clipping is active. These are in addition to the field outputs that are available for the laminar com-
pressible/incompressible simulations. Default variables are output automatically and do not need to be specified in the
plot_output line in the run control file. The variables kResidualTT, omegaResidualTT, and epsilonResidualTT
are useful for gauging solution convergence.

Table 4: Field Variable Output for Turbulent Flows

Variable Description Default
k Turbulent kinetic energy No
kclip Turbulent kinetic energy clipped flag No
kResidual Turbulent kinetic energy eq. residual No
kResidualTT Turbulent kinetic energy eq. turn-over time No
omega Specific dissipation rate No
omegaclip Specific dissipation rate clipped flag No
omegaResidual Specific dissipation rate eq. residual No
omegaResidualTT Specific dissipation rate eq. turn-over time No
epsilon Turbulent dissipation No
epsilonClip Turbulent dissipation clipped flag No
epsilonResidual Turbulent dissipation eq. residual No
epsilonResidualTT Turbulent dissipation eq. turn-over-time No
viscosityRatio Turbulent/laminar viscosity ratio No
eddyViscosity Turbulent viscosity No

References

4.3. Example Case: Backward Step 25

Loci-Stream, Release 2.1.9

26 Chapter 4. Simulation of Turbulent Flows

CHAPTER

FIVE

SIMULATION OF CAVITATING FLOWS

Stream can be used to simulate flows with cavitation by loading the cavitation module at run-time. This is done by
inserting the following loadModule directive into the run control file as shown below.

loadModule: cavitation_nist
{
... standard run control file content
}

The cavitation_nist module uses tabulated REFPROP data for the equation of state and the fluid transport proper-
ties. The following sections discuss the analytical models for the cavitation source terms and provide information on
the run control file variables required to perform simulations with the cavitation module.

5.1 Cavitation Model
Stream uses a homogeneous equilibrium model (HEM) to simulate the onset and evolution of cavitation within the
fluid system. With such a model, the phases in the system (liquid, vapor, and non-condensable gas) are spatially
averaged and assumed to occupy the same volume (homogeneously mixed). In addition, all phases are assumed to be
in both mechanical and thermodynamic equilibrium, whereby the pressure, temperature, and velocity of the phases
at any point are identical. The HEM is considered a good approximation for cavitating flows where the disturbance
time scales and frequencies are long compared to the cavitation equilibration time. With these approximations, the
continuity, momentum, and energy equations are solved for the mixture, rather than for the individual constituents
of the flow. In addition, a transport equation for the vapor mass fraction is solved which contains source terms which
generate vapor when the local flow pressure becomes lower than the vapor pressure of the fluid at the local temperature.
A transport equation is also solved for the non-condensable gas (NCG) mass fraction. The transport equations for these
two quantities are shown below:

𝜕(𝜌𝛼𝑣)

𝜕𝑡
+

𝜕(𝜌𝑣𝑗𝛼𝑣)

𝜕𝑥𝑗
= 𝐹 (𝑃, 𝑃min, 𝐹max, 𝑛) · 𝑆(𝑃, 𝑃𝑣𝑎𝑝(𝑇))

𝜕𝜌𝛼𝑁𝐶𝐺

𝜕𝑡
+

𝜕𝜌𝑣𝑗𝛼𝑁𝐶𝐺

𝜕𝑥𝑗
= 0

where 𝜌 is the mixture density, 𝑣𝑗 is the flow velocity, P is the static pressure, T is the temperature, 𝛼𝑉 is the va-
por mass fraction, and 𝛼𝑁𝐶𝐺 is the non-condensable mass fraction . The following subsections describe the models
that are available for the net vapor production rate source term 𝑆(𝑃, 𝑃𝑣𝑎𝑝(𝑇)) and the source term scaling factor
𝐹 (𝑃, 𝑃min, 𝐹max, 𝑛), which is can be activated in certain instances to prevent flow pressures from reaching unphysi-
cally low values.

27

Loci-Stream, Release 2.1.9

5.1.1 Merkle Source Term Model
The Merkle source term model [MeFB1998] [HoAU2007] is a simple heuristic model in which the net vapor produc-
tion rate is linearly proportional to the difference between the local flow pressure and the local vapor pressure. The
expression for the net vapor production rate is given by the following:

𝑆(𝑃, 𝑃𝑣𝑎𝑝(𝑇)) = 𝜌(𝐾𝑓𝛼𝐿 +𝐾𝑏𝛼𝑉)

where 𝜌 is the mixture density,𝛼𝐿 is the liquid mass fraction, and𝛼𝑉 is the vapor mass fraction. The forward production
and backward destruction rate coefficients 𝐾𝑓 and 𝐾𝑏 are given by:

𝐾𝑓 =

{︃
0, if 𝑃 > 𝑃𝑣𝑎𝑝

1
𝜏𝑣𝑎𝑝

(︁
𝑃𝑣𝑎𝑝−𝑃

1
2𝜌∞𝑈∞𝐿∞

)︁
, if 𝑃 ≤ 𝑃𝑣𝑎𝑝

𝐾𝑏 =

{︃
0, if 𝑃 < 𝑃𝑣𝑎𝑝

1
𝜏cond

(︁
𝑃𝑣𝑎𝑝−𝑃

1
2𝜌∞𝑈∞𝐿∞

)︁
, if 𝑃 > 𝑃𝑣𝑎𝑝

In the expressions above, 𝜏𝑣𝑎𝑝 is the vaporization rate constant, 𝜏𝑐𝑜𝑛𝑑 is the condensation rate constant, and 𝜌∞, 𝑈∞,
and 𝐿∞ represent the freestream fluid density, velocity, and the reference length scale, respectively. These parameters
can be specified in the run control file using the names shown in the table below.

Table 1: Merkle Source Term Model Tunable Parameters

Variable Description Default Value
tauVap Vaporization rate constant 1
tauCond Condensation rate constant 0.0125
L Reference Length None
V Reference Velocity None
rho Reference density None

The Merkle model can be selected by specifying source=Merkle in the cavitationEquationOptions variable as
shown below.

cavitationEquationOptions: <linearSolver=SGS, relaxationFactor=0.9, maxIterations=5,
source=Merkle>

The corresponding parameters for the model can then be set using the MerkleSourceParameters variable as follows.

MerkleSourceParameters: <tauVap=1.0, tauCond=0.0125, L=0.7, V=1.5, rho=1.15>

5.1.2 Zwart Source Term Model
The functional form of the Zwart source term model [GeZB2004] is derived from the Rayleigh-Plesset equation which
describes the growth or collapse of a vapor bubble in a pressurized fluid environment. Although more formally based
on the physics of nucleation and vaporization, this model is none-the-less also ultimately heuristic in nature due to the
introduction of constants that allow tuning of the vaporization and condensation rates for the problem of interest. The
net vapor production rate is given by the following:

𝑆(𝑃, 𝑃𝑣𝑎𝑝(𝑇)) =

⎧⎨⎩𝐹𝑣𝑎𝑝
3𝑟𝑛𝑢𝑐(1−𝛼𝑉)𝜌𝑉

𝑅𝐵

√︁
2
3
𝑃𝑣𝑎𝑝−𝑃

𝜌𝐿
, if 𝑃 ≤ 𝑃𝑣𝑎𝑝

𝐹𝑐𝑜𝑛𝑑
3𝛼𝑉 𝜌𝑉

𝑅𝐵

√︁
2
3
𝑃−𝑃𝑣𝑎𝑝

𝜌𝐿
, if 𝑃 > 𝑃𝑣𝑎𝑝

where P is the local pressure, 𝑃𝑣𝑎𝑝 is the local vapor pressure, 𝛼𝑉 is the local vapor mass fraction, 𝜌𝑉 is the local vapor
density, 𝜌𝐿 is liquid density, 𝑅𝐵 is the bubble nucleation radius, and 𝑟𝑛𝑢𝑐 is the nucleation volume fraction. The table
below shows the default values for the user-tunable parameters for the model. Generally, unless specific knowledge is

28 Chapter 5. Simulation of Cavitating Flows

Loci-Stream, Release 2.1.9

available regarding nucleation for a particular problem, one should only adjust the rate constants 𝐹𝑣𝑎𝑝 and 𝐹𝑐𝑜𝑛𝑑 to
tune the model.

Table 2: Zwart Source Term Model Tunable Parameters

Variable Description Default Value
FVap Vaporization rate constant 50
FCond Condensation rate constant 0.01
RB Bubble nucleation radius 1.0e-06
aNuc Nucleation volume fraction 5.0e-04

5.1.3 Sauer-Schnerr Source Term Model
The Sauer-Schnerr source term model [ScSS2008] is based on the Rayleigh-Plesset bubble dynamics equation. The
expression for the net vapor production rate is given by the following:

𝑆(𝑃, 𝑃𝑣𝑎𝑝(𝑇)) =

⎧⎨⎩𝐹𝑣𝑎𝑝
𝜌𝑣𝜌𝐿

𝜌𝑚
𝛼𝑉 (1− 𝛼𝑉)

3
𝑅𝐵

√︁
2
3
𝑃−𝑃𝑣𝑎𝑝

𝜌𝐿
, if 𝑃 < 𝑃𝑣𝑎𝑝

−𝐹cond
𝜌𝑉 𝜌𝐿

𝜌𝑚
𝛼𝑉 (1− 𝛼𝑉)

3
𝑅𝐵

√︁
2
3
𝑃𝑣𝑎𝑝−𝑃

𝜌𝐿
, if 𝑃 > 𝑃𝑣𝑎𝑝

Where 𝜌𝐿 is the liquid density, 𝜌𝑉 is the vapor density, 𝜌𝑚 is the mixture density, 𝛼𝑉 is the vapor mass fraction, and
𝑅𝐵 is the bubble radius. The bubble radius has the following definition.

𝑅𝐵 =

(︂
𝛼𝑉

1− 𝛼𝑉

3

4𝜋𝑛

)︂ 1
3

Where n is the bubble number density, and often takes a value around 1e+08. The table below describes the user
tunable parameter for the model.

Table 3: Sauer-Schnerr Source Term Model Tunable Parameters

Variable Description Default Value
rNuc Nucleation radius 1.0e-5
n Bubble number density None

5.1.4 Source Term Scaling Factor
From the description of the source term models above, one can see that a specific functional relationship between the
vapor production rate and the difference between the local flow pressure and the local vapor pressure is postulated. For
the Merkle model a linear dependence is assumed while for the Zwart and Sauer-Schnerr models a square root depen-
dence is assumed. For certain flow problems, the nature of the cavitation is such that neither functional dependence can
provide an ample amount of vapor generation in certain regions without the pressure decreasing to values significantly
below the vapor pressure and in certain cases becoming negative. This can result in the demise of the simulation. In
practice, in any real device in which the flow is cavitating, the minimum pressure in the domain should remain in the
vicinity of the local vapor pressure. In order that this can be achieved in numerical simulations without having to adjust
the vaporization rate parameters to unrealistically high values (which would thus cause large amounts of vapor to be
produced at all cells where 𝑃 < 𝑃𝑣𝑎𝑝), a source term scaling factor has been included in the formulation. This factor
is only applied to locations in the domain where the pressure departs significantly from the local vapor pressure. The
source term scaling factor 𝐹 (𝑃, 𝑃𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥, 𝑛) is defined by the following expression:

𝐹 (𝑃, 𝑃min, 𝐹max, 𝑛) =

⎧⎨⎩1 + (𝐹max − 1)

[︂
𝑒−𝑛(𝑃)

𝑃𝑚𝑖𝑛
−1

𝑒𝑛−1

]︂
, if 𝑃 < 𝑃min

1, if 𝑃 > 𝑃min

5.1. Cavitation Model 29

Loci-Stream, Release 2.1.9

The image below shows a plot of the function, while the table shows the default values the scaling factor parameters.
Since the primary goal is to prevent the simulation from departing too far at any point from the local vapor pressure,
the model should have its parameters set such that below the value 𝑃 = 𝑃𝑚𝑖𝑛 the source term scaling factor ramps up
rapidly. This is achieved typically with the default value of n.

Fig. 1: Source term scaling factor for controlling minimum simulation pressure. Scaling becomes active at user speci-
fied value of 𝑃𝑚𝑖𝑛. User specified value 𝐹𝑚𝑎𝑥 controls maximum scaling, while user specified exponent 𝑛 adjusts the
scaling profile.

Table 4: Source Term Scaling Parameters

Variable Description Default Value
cavitationMaxSourceFactor Maximum scaling factor 1
cavitationSourceFactorExponent Exponent 1
cavitationMinPressure Scaling activation pressure 1

The maximum scaling factor 𝐹𝑚𝑎𝑥 is usually problem dependent, however, the value in the table is a good starting
point. The selection of 𝑃𝑚𝑖𝑛 should be guided by actual experimental measurements on similar flow configurations if
possible, however, if such information is not available, values in the range of no more than several hundred Pascals below
the vapor pressure are recommended. In general, it is noted that the minimum simulation pressure will be somewhat
below the specified value of 𝑃𝑚𝑖𝑛 because this is merely the point at which the source term scaling is activated.

5.2 Control File Setup
Setting up a run control file for the simulation of a cavitating flow is like setting up a standard compressible flow
problem. It is important to note that cavitating flows can only be simulated in compressible mode. A few important
guidelines must be observed when setting up the run control file for a cavitation simulation:

• Boundary conditions must be set for the vapor mass fraction variable vapor_y and non-condensable gas mass
fraction variable, NCG_y, on all inlet boundaries.

• Initial conditions must be set for vapor_y and NCG_y.

• The temperature form of the energy equation must be used by specifying form=temperature in the variable
energyEquationOptions. The total enthalpy and total energy forms of the energy equation are not supported.

30 Chapter 5. Simulation of Cavitating Flows

Loci-Stream, Release 2.1.9

The specifications for vapor_y and NCG_y must always be provided. If there is no NCG in the flow, specify a value of
0. The following subsections detail each section of the run control file.

5.2.1 Boundary Conditions
Because cavitating flows must be simulated using compressible mode, the only inlet boundary conditions that should
be in use are subsonicInlet, supersonicInlet, and inflow. The following shows an example of the specification
of the vapor_y and NCG_y boundary condition for a subsonic inlet with pure liquid with a small amount of NCG:

Inlet=subsonicInlet(v=10.11 m/s, T=300.0 K, k=0.0, omega=1000.0, vapor_y=0.0, NCG_y=1.
0e-06)

Similar specification would be made for the other inlet types.

5.2.2 Initial Conditions
The initial condition for the vapor and NCG mass fractions are set as follows:

initialCondition: <vapor_y=0, NCG_y=0.0, v=10.11 m/s, p=28515.8 Pa, T=300.0 K, k=0.0,
omega=1000>

Similar specification of these values can be made using the run control file variables ql and qr or the variable
initialConditionRegions as discussed in the following Appendix.

5.2.3 Equation of State and Transport Properties
The cavitation_nist module utilizes tabulated thermophysical property data from the NIST REFPROP software. A
python utility is provided with the Stream source code that can generate tabulations for liquid, vapor, and saturation
data files for any REFPROP species. The utility will generate three output files with suffixes of .liq, .vap, and .sat.
The prefixes for the liquid and vapor files must be provided using the liquid_model and vapor_model variables in the
run control file. The prefix for the saturation file will be taken from the liquid_model variable. The equation-of-state
section in the run control file should look as follows:

liquid_model: NITROGEN
vapor_model: NITROGEN
transport_model: module

Setting the value of the transport_model to module indicates that all transport data is to be obtained from data in
the tabulated liquid, vapor, and saturation files.

5.2.4 Cavitation Equation Options
An example of the cavitation equation section of the run control file with all available options is shown below:

cavitationEquationOptions: <linearSolver=SGS, relaxationFactor=0.9, maxIterations=5,
source=Zwart, vaporProductionRateRelaxationFactor=0.7>

ZwartSourceParameters: <RB=1.0e-06, aNuc=5.0e-04, fVap=50.0, fCond=0.01>
cavitationInviscidFlux: SOU
AlphaViscosity: 1.0e-05
liquid_rho: 736
vapor_rho: 17
NCG_rho: 15
cavitation: on
cavitationSourceScaling: <Pmin=3200, Fmax=100, n=10>
turbulentVapourPressureCorrection: on

5.2. Control File Setup 31

Loci-Stream, Release 2.1.9

The .vars file variables used are summarized in the table below.

Table 5: Some Cavitation Module Options

Parameter Description
AlphaViscosity Artificial viscosity added to vapor and NCG mass fraction transport equations for

numerical stability purposes.
cavitationInviscidFlux Flux scheme used for vapor and NCG transport equations. Supported values are:

FOU and SOU.
liquid_rho Reference value for liquid-phase density used in normalizing the liquid term in the

pressure-correction equation.
vapor_rho Reference value for vapor-phase density used in normalizing the vapor term in the

pressure-correction equation.
NCG_rho Reference value for non-condensable-gas density used in normalizing the NCG

term in the pressure-correction equation.
turbulentVapourPressureCorrectionActivates the turbulent correction to the vapor pressure.

The linear solver options are like the other governing equations that have been previously covered. All linear solvers
discussed (here) are supported for the value of linearSolver, however one should rarely need to use anything other
than the SGS solver. Source term model selection is made using either source=Merkle, source=SauerSchnerr, or
source=Zwart. Default parameters for these three models are shown below:

MerkleSourceParameters: <tauVap=1.0, tauCond=0.0125>
ZwartSourceParameters:<RB=1.0e-06, aNuc=5.0e-04, fVap=50.0, fCond=0.01>
SauerSchnerrSourceParameters: <rNuc=3.0e-06, n=4.8e8>

To explicitly turn off the source terms in the vapor mass fraction equation, one can specify cavitation: off in the
run control file. The default value for this variable is on. Parameters for the source scaling model can be specified using
the variable cavitationSourceScaling. No source term scaling will be performed is this variable is not present in
the run control file. If the liquid_rho, vapor_rho, and NCG_rho variables are not included (or are set to -1), the
code will use local cell values to normalize the pressure-correction equation at each cell.

5.2.5 Non-Condensable Gas Specification
All cavitation simulations involve NCG terms in the governing equations, even if the user does not use NCG. The default
fluid properties used for the nonCondensableGasProperties variable is air as shown below. To use a different fluid,
the user must specify its molar mass m, specific heat at constant pressure cp, laminar dynamic viscosity mu, and thermal
conductivity kcond in the nonCondensableGasProperties variable.

nonCondensableGasProperties: <m=28.9647 g/mol, cp=1005 J/kg/K, mu=1.805e-5 kg/m/s,
kcond=0.02476 W/m/K>

32 Chapter 5. Simulation of Cavitating Flows

Loci-Stream, Release 2.1.9

5.2.6 Output Variables
The table below shows additional field variables that are available for output in cavitating flow simulations. Default
variables are output automatically and do not need to be specified in the plot_output line in the run control file.

Table 6: Field Variable Output for Cavitating Flows.

Variable Description Default
bt` Bulk expansion coefficient * temperature No
F Source term scaling factor No
liquid_vof Liquid volume fraction No
liquid_y Liquid mass fraction No
NCG_vof NCG volume fraction No
NCG_y NCG mass fraction No
NCG_yResidual NCG mass fraction eq. residual No
pV` Vapor pressure No
rhoL Liquid density No
rhoV Vapor density No
vapor_y Vapor mass fraction No
vapor_vof Vapor volume fraction No
vapor_yResidual Vapor mass fraction eq. residual No

5.3 REFPROP Tabulation Utility
The Python REFPROP tabulation utility is located under in the bin/ directory in the source code. The name of the
utility is cav_tab_tool. This tool is for building necessary liquid, vapor, and saturation input files.

The Python tabulation utility has a functionality for making calls directly to REFPROP 11. This allows for the tool to
tabulate as many pressure levels as the user desires. The user specifies the REFPROP material name, the pressure range,
temperature range, and the number of data points to use over each range. The user can also pass a flag (--log_p) to
uniformly distribute the pressure points in the log-space to ensure that an equal number of points resolve each pressure
decade (this is good for large pressure ranges).

A set of .liq, .vap, and .sat files are generated by the tool, and these are the inputs used by the cavitation_nist
module in Stream. Sample calls to the utility for the liquid/vapor files and the saturation files are given below.

There are two modes that the tool can be used in. One is for tabulating properties outside of a two-phase region in the
thermodynamic space. The other is for tabulating the saturation curve properties of the liquid and vapor states.

5.3.1 Liquid/Vapor Tabulation
To generate tabulated liquid and vapor files, one should pass the liquidVapor argument to the tabulation tool. The
presence of this argument enables a required set of arguments which are described below:

5.3. REFPROP Tabulation Utility 33

Loci-Stream, Release 2.1.9

Table 7: Liquid/Vapor Tabulation Arguments

Argu-
ment

Description

t_min The minimum temperature range value
t_max The maximum temperature range value
num_t The number of temperature levels
p_min The minimum pressure range value
p_max The maximum pressure range value
num_p The number of pressure levels
log_p An optional argument that distributes the pressure levels uniformly across the logarithmic space of the

pressure range

If the log_p argument is not provided, a linear tabulation in the pressure dimension is performed. The logarithmic
spacing enabled by the log_p argument creates a uniform spacing in the logarithmic space. This type of spacing is
useful when there is a large variation in the pressure range, as a linear tabulation would result in a low resolution in the
low-pressure region of the tabulation. An example command to generate liquid and vapor tabulation files for nitrogen
in the temperature range of 65K-300K and pressure range of 50kPa-70MPa is shown below.

<StreamInstallDir>/bin/cav_tab_tool liquidVapor --fluid_name NITROGEN --t_min 65 --t_max␣
→˓300 --p_min 50000 --p_max 70e6 --log_p --num_p 200 --num_t 200

In the example above, the liquidVapor argument sets the tool into the mode for tabulating .liq and .vap tables.
The fluid_name argument must match an available REFPROP FLD file in the REFPROP fluid database. The tabulation
levels are done at constant pressure, and so the t_min and t_max arguments are the temperature range over which to
tabulate properties. The p_min and p_max arguments are the inclusive bounds of the pressure range over which you
want to tabulate data. The log_p argument converts the pressure range into a logarithmic range and distributes points
equally in that space and then converts back to pressure levels. This ensures an equal number of pressure levels per
decade of pressure. This is sometimes a desirable option. The num_p and num_t arguments are the number of pressure
levels to tabulate and the number of temperature levels to tabulate.

5.3.2 Saturation Tabulation
To generate a tabulated saturation file, one should pass the saturation argument to the tabulation tool. The presence of
this argument enables a required set of arguments which are described below:

Table 8: Liquid/Vapor Tabulation Arguments

Argument Description
t_min The minimum temperature range value
t_max The maximum temperature range value
num_t The number of temperature levels

An example command to generate a saturation tabulation file for nitrogen in the temperature range of 65K-300K with
150 tabulation points is shown below.

<StreamInstallDir>/bin/cav_tab_tool saturation --fluid_name NITROGEN --t_min 65 --t_max␣
→˓300 --num_t 150

In the example above, the saturation argument activates the saturation curve tabulation mode of the script. This mode
has fewer arguments than the liquidVapor mode. The temperature range and number of points to include are the only
arguments that are necessary. These arguments have the same meanings as they do for the liquidVapor mode of the
tabulation tool that was discussed earlier.

34 Chapter 5. Simulation of Cavitating Flows

Loci-Stream, Release 2.1.9

5.3.3 Using Cavitation Tabulation Tool
One must have version 11 of the REFPROP software to use the cavitation tabulation tool. A short tutorial on how to
install the dependencies for the cavitation tabulation tool is presented below.

1. Download the REFPROP 11 software using the NIST downloader. This must be done on a Windows machine.
The software will be downloaded into a directory named REFPROP.

2. Copy the REFPROP directory over to a Linux machine. The software can be put in a directory such as /home/
<User>/software/refprop, where <User> would be your username on the machine). Note: do not rename
the REFPROP source code directory because that may cause issues. For example, the path should look as follows:
/home/<User>/software/refprop/REFPROP

3. Compile a local version of REFPROP on your Linux machine

a. Do a recursive clone of the following repository: git clone --recursive https://github.com/
usnistgov/REFPROP-cmake.git

b. Go to the root of the cloned repository: cd REFPROP-cmake

c. Create a build directory: mkdir build

d. Change to the build directory: cd build

e. Run cmake to configure the build: cmake .. -DCMAKE_BUILD_TYPE=Release
-DREFPROP_FORTRAN_PATH=/home/<User>/software/refprop/REFPROP/FORTRAN

f. Build the project: cmake --build .

4. Once the build is complete, a librefprop.so file should be found in the build directory. This shared library
contains all the REFPROP functions that the Python wrapper will call. Move this file to the REFPROP directory
created in step 2.

a. Move the shared library file: mv librefprop.so /home/<User>/software/refprop/REFPROP

5. Set the environment variable RPPREFIX to point to the REFPROP directory that contains the shared library file.

a. Add the following line to your .bashrc file: export RPPREFIX=/home/<User>/software/refprop/
REFPROP.

b. Make sure to source your .bashrc file after adding this line: source ~/.bashrc.

6. Clone the REFPROP wrappers directory into the /home/<User>/software/refprop directory using the fol-
lowing command: git clone https://github.com/usnistgov/REFPROP-wrappers

7. Create a Python3 environment with the REFPROP interface installed. This will provide a portable and depend-
able Python environment for running the tabulation tool. Go to your refprop directory and follow the steps
below:

a. Create a virtual environment: python3 -m venv refprop-env

b. Activate the environment: source refprop-env/bin/activate

c. Install numpy: pip install numpy

d. Navigate to the REFPROP wrappers directory: cd /home/<User>/software/refprop/
REFPROP-wrappers/wrappers/python/ctypes

e. Install the python wrapper into the environment: python setup.py install

f. To leave the virtual environment type: deactivate

One you are in the python environment, you can run the tabulation script and it should execute using calls to the
REFPROP library.

5.3. REFPROP Tabulation Utility 35

Loci-Stream, Release 2.1.9

References

36 Chapter 5. Simulation of Cavitating Flows

CHAPTER

SIX

SIMULATION OF COMBUSTING FLOWS WITH FLAMELET METHOD

Stream supports solving combustion problems via using flamelet tables that are created from solving flamelet equations.

6.1 Flamelet Method
The flamelet method tries to balance computational speed and accuracy by pre-tabulating reaction data for a class of
representative combustion model problems that can accumulated to build a database that can be queried to quickly pro-
vide information such as heat release and species production rates. A limitation of this method is that it is not accurate
for problems that do not lend themselves to being easily represented by a series of flamelet solutions. The flamelet
generation process and the theory behind the flamelet equations is documented in a separate guide. A much more
detailed introduction to flamelet modeling can be found in Peters’ book Turbulent Combustion [Pete2000]. Diffusion
flamelet tables are heavily used with in the flamelet model due to their applicability for injector combustion problems.

To use the compressible flamelet module, the run control file should appear as follows:

loadModule: compressible_flamelet_tf
{
... standard vars file content
}

All flamelet simulations are parameterized by at least two variables: the mixture fraction(Z) and the progress vari-
able(C). The mixture fraction is a variable that represents the state in the fuel and oxidizer streams where a value of
Z=0 in the oxidizer stream and Z=1 in the fuel stream. The progress variable is usually defined as the summation
of a series of combustion product mass fractions (e.g., C= YH20 + YCO2), and as such is used as a measure of the
completeness of a reaction. A value of zero would represent a state where there are no products of combustion and a
value of 1 would be a state where there are only products of combustion. Practically, C rarely will go to 1 as there is
often a limit to the combustion process turning all the reactants into products for engineering applications.

6.2 Control File Setup
A few important guidelines must be observed when setting up the run control file for a flamelet combustion simulation:

• Boundary conditions must be set for the mixture fraction variable Z and the progress variable C on all inlet
boundaries.

• Initial conditions must be set for Z and C.

The following subsections detail the specifics of each section of the vars file required for flamelet simulations.

37

Loci-Stream, Release 2.1.9

6.2.1 Boundary Conditions
The following shows an example of the specification of the flamelet boundary condition for a subsonic inlet for an
oxidizer stream with an inert species present in the stream:

Oxidizer_Inlet=subsonicInlet(mdot=2.51243E-04 kg/s, T=700.0 K, Z=0.0, C=0.0551,
k=4.2, omega=12900.0)

This specification has an oxidizer inlet with an inert species present in the oxidizer stream (not pure O2), and a definition
of the progress variable that includes the species that is mixed with the oxidizer; therefore, the value of C is non-zero
for this case. For cases with totally pure oxidizer and fuel streams, the value of C will be zero. A specification of an
inlet boundary condition for a pure fuel stream is shown below:

Fuel_Inlet=subsonicInlet(mdot=9.1978E-05 kg/s, T=811.0 K, Z=1.0, C=0.0,
k=0.5, omega=37950.0)

6.2.2 Initial Conditions
The initial conditions for Z and C are set as follows:

initialCondition: <v=0.0 m/s, p=5.4e+06 Pa, T=3174.0 K, Z=0.34, C=0.912,
k=0.5, omega=37950.0>

Similar specification of Z and C can be made using the run control file variables ql and qr or the variable
initialConditionRegions.

6.2.3 Transport Properties
When running with the compressible flamelet module, the transport properties used by Stream can be either obtained
from the flamelet table or from tabular data.

6.2.4 Flamelet Table Transport Properties
To use the transport properties from the flamelet table. Specify the transport_model as module as shown

below.

transport_model: module

The flamelet table provides transport properties that are precomputed and stored for quick access during simulations.

6.2.5 Tabular Transport Properties
There may be cases where a certain flamelet type, such as a 0D reactor, does not include transport properties, or cases
where a user may want to provide their own transport properties. The tabular transport properties feature provides
the functionality to use user-generated transport property tables in flamelet simulations. This module overrides the
transport properties that are obtained from the flamelet table with values from user-generated tabulation files.

To activate the tabular transport properties, the the compressible_flamelet_tf_tabular_transport module
needs to be loaded at the top of the run control file. An example of the run control file variables that need to be
specified is shown below:

..code-block:

loadModule: compressible_flamelet_tf_tabular_transport
{

(continues on next page)

38 Chapter 6. Simulation of Combusting Flows with Flamelet Method

Loci-Stream, Release 2.1.9

(continued from previous page)

transport_model: module
eos_type: fluid

combustionModels:
<
detailed_chemistry=H2,
nonpremixed=flamelet(table="allstar_fpvc_ideal_20240909.h5")
>

}

Where the argument in the detailed_chemistry option is the name of the .mdl file that contains the species data.
Two available tabulation formats are available when using the tabular transport module: ideal-gas and REFPROP style
tabulations.

6.2.6 Ideal-Gas Tabulation
The ideal-gas tabulation format utilizes a Chemkin format transport database file which includes fitting coefficients for
viscosity, thermal conductivity, and diffusion coefficients.

The method for generating tabulation files is outlined here. The final result will be a folder named transport/ which
contains the tabulated transport properties for all the species in the mechanism.

6.2.7 REFPROP Tabulation
To generate tabulations for species that have REFPROP fluid file available, the makeTables utility can be used.

makeTables -refpropfluid O2

This will generated a set of files that will be output to an EoSTables/ folder. Multiple fits for different species can be
made and the data for each species fit will be located in a separate folder within the EoSTables/ directory named after
the species. This requires a version of REFPOP to be installed on the user’s system.

6.2.8 Custom Temperature Tabulation
Another alternative that can be used for cases where a REFPROP fluid file is not available is to use the makeTables
utility with a custom set of input data for the fluid of interest. This data is stored in a file where the first column is the
temperature and the second column is the property. These files can then be passed to the makeTables utility and it
will generate a set of curve fits that are output to a folder named EoSTables/.

6.2.9 Flamelet Equation Options
The flamelet equation section of the run control file with all available options appears as follows:

flameletEquationOptions: <linearSolver=SGS, relaxationFactor=0.5, maxIterations=5>
combustion: on
flameletInviscidFlux: SOU

6.2.10 Output Variables
The table below shows additional field variables that are available for output in flamelet simulations. Default variables
are output automatically and do not need to be specified in the plot_output line in the run control file.

6.2. Control File Setup 39

Loci-Stream, Release 2.1.9

Table 1: Field Variable Output for Combusting Flamelet Flows

Variable Description Default
ZZ Mixture fraction No
C Mixture progress variable No
ZResidual Mixture fraction eq. residual No
CResidual Mixture progress variable eq. residual No

References

40 Chapter 6. Simulation of Combusting Flows with Flamelet Method

CHAPTER

SEVEN

SIMULATION WITH OVERSET GRIDS

Stream can use overset grids for simulating cases that have complex geometries or require mesh movements. This
capability is enabled by inserting the following loadModule directive into the run control file as shown below.

loadModule: overset
{
... standard run control file content

}

The following sections discuss the overset method used in Stream and provide information on the run control file
variables required to perform simulations with the overset module.

7.1 Overset Method
Stream uses a standard overset method where a background mesh has component meshes overlayed on it, and appropri-
ate hole-cutting and blanking of cells is performed. At the interfaces of the components, a buffer region of cells exists
to provide an implicit interpolation between the overlapping meshes. Some definitions that are helpful when working
with the overset module are:

Table 1: Definitions of terms used in the overset method.

Term Description
Blanked
cells

Cells that have been assigned a flag that controls how the cells are to be used in the context of the overset
method (the nomenclature for these markers is iblank=1, iblank=2, etc).

Hole cut-
ting

The removal of irrelevant or unused cells from an overset computation

Com-
ponent
geometry

The rough geometric specification (provided in the control file) of a component mesh’s shape that is
used to remove background mesh cells that “inside” the component mesh’s empty area.

Interface
boundary

The outermost boundary of a mesh.

iblank=0
State

Cells where the governing equations are solved normally. Values are donated to interpolation.

iblank=1
State

Cells where the governing equations are solved normally. Values are not donated to interpolation.

iblank=2
State

Cells of this type are not computed (no equations are solved within those cells), they receive their values
by interpolating from a cloud of points that comes from a set of cells with iblank=0 (which are from
the background mesh).

iblank=3
State

Cells are not computed. Their current value is simply advanced with time.

41

Loci-Stream, Release 2.1.9

The iblank=3 cells are often ones that lie outside the background mesh, or background cells that are deep within a
component mesh beyond the interpolation layer. The iblank=1 state is not used often during the overset simulations
and is included for possible future uses. The most relevant states are the iblank=0,2,3 states.

The overset method marks roughly three layers of cells inwards from the interface boundary on a component ge-
ometry’s mesh with the iblank=2 state. This means that the values in that buffer layer of cells on the component
geometry’s mesh obtain their values from an interpolation from the cloud of points on the background mesh. For ex-
ample, the pressure correction equation is solved on the iblank=0 cells of the component mesh, which are adjacent
to the iblank=2 cells. When an iblank=0 cell requires information about its iblank=2 neighbor, a list of cells that
are used to construct the neighbor’s value, and the corresponding interpolation weights from each of those cells is
collected. These stencil weights are directly inserted into the matrix equation for the pressure correction equation to
provide implicit coupling between a component mesh and the background mesh.

7.2 Overview of the method
What follows in this section is a more detailed review the overset framework. Start by examining the figure below.
Here the gray cells are iblank=0, the green cells are iblank=2, and the red cells are iblank=3. The right element
in the image is the component mesh, and a solid component boundary is shown on the far right side of the element.
For this simple illustration the two grids overlap in a 1D manner. Note: The image shown is as if the two meshes
were overlapping, but retaining the coloring scheme. They are shown separated in this figure first to help the reader
understand the marking and coloring scheme.

Fig. 1: A background and component mesh that are separated. The coloring shows the iblank state as if they were on
top of each other (as will be shown in later figures).

The figure below shows the two grids overlaid properly. The boundary of the component mesh has its outer layer marked
as iblank=2, which draws from the iblank=0 background cells. The background mesh cells close to the component
geometry’s solid surface are set to iblank=3, and a set of buffer layer cells on the background mesh around the
iblank=3 cells are set to iblank=2, which they obtain their values from the iblank=0 cells on the component mesh.

Fig. 2: Both background and component meshes over each other. The iblank colors are consistent with the grid posi-
tioning.

The figure below shows an example case of how the implicit treatment is performed for the pressure correction equation.
In this case, consider the cell A, which is located on the component mesh. It is gray, so it has a iblank=0 state, and the
governing equations are solved on that cell. It requires information from its neighbor cells. The data about the cell to
its right is easily obtained. The cell to its left (cell B) however is a green iblank=2 cell. So that cell’s data is coming
from an interpolation that uses data from the gray background iblank=0 cells around it. The background cell centers

42 Chapter 7. Simulation with Overset Grids

Loci-Stream, Release 2.1.9

are shown and numbered. The arrows point to the stencil of cells that hypothetically go into the interpolation for cell
B. To construct the matrix equation for the pressure equation for cell A, one needs coefficient information from cells
that contribute to the solution of cell A. This is how the equation [𝐴][𝑃 ′] = [𝑏] is constructed. The difference here is
that for cell A, the neighbor value of cell B is not used directly. Cell B’s data is a weighted sum of the values of the
pressure correction of cell 1,2,3,4,5,6 in the diagram. These weights are directly inserted into the coefficient matrix
for the pressure correction equation such that the equation for cell A contains entries from its right neighbor, and cells
1,2,3,4,5,6. This is then the equation that is solved.

Fig. 3: An example showing how the information for data from an iblank=2 cell is obtained from the cloud of points.

Pressure contours for a 2D plug/pipe case can be seen in the image below. Continuity of the solution across the overset
mesh interface can be observed using the implicit method in this flow where a high pressure on left side of the domain
flows over a plug and towards the right.

Fig. 4: Pressure contours across the overset 2D sideways plug example case. Contours vary smoothly across the overset
interface.

7.2. Overview of the method 43

Loci-Stream, Release 2.1.9

Fig. 5: Pressure contours across the implicitly handled overset grid interface.

7.3 Control File Setup
Only a few additions need to be made to an existing run control file to set up an overset simulation. One thing to be
aware of when setting up for an overset simulation is the specification of the componentGeometry variable as the
overset algorithms depend on this variable being properly specified. The following subsections detail each section of
the run control file.

7.3.1 Boundary Conditions
The boundary conditions for all the surfaces of both the background mesh and component meshes need to be specified
in the boundary_conditions section of the run control file. The external mesh boundary of the component mesh
needs to have an interface boundary specification as shown below for example.

overset_boundary=interface

In the above example the boundary name on the left of the = is whatever boundary name you have chosen for the mesh
external boundary. No other adjustments need to be made to the boundary condition specifications section. Specify
the other boundary conditions as you would for a non-overset simulation.

44 Chapter 7. Simulation with Overset Grids

Loci-Stream, Release 2.1.9

7.3.2 Initial Conditions
No changes to the initial conditions need to be made to accommodate an overset simulation.

7.3.3 Component Geometry
An important run control file specification that is required for overset simulations is the componentGeometry variable.
This variable defines a region of the domain that should contain the inner volume of a component’s geometry. It does
not have to be exact, but a close approximation will help the overset algorithm to properly mark and assign cells. The
figure below shows an example diagram of an overset mesh configuration with the most common features named with
the nomenclature used in this manual.

Fig. 6: Diagram showing the important features of an overset simulation and the names used to refer to these features
typically.

In keeping with the example shown above, the specification of a rectangular componentGeometry is shown the figure
below. This rectangular region is what the overset algorithm uses to determine which background mesh cells should
be marked with the non-participating iblank=3 state.

Fig. 7: This is an example showing a rectangular componentGeometry specified to approximate the complex shape
contained within it. The red rectangular region is what the overset algorithm uses to determine which background mesh
cells to mark with the iblank=3 state.

An example of specifying the componentGeometry variable in the run control file is shown below.

componentGeometry: <body1=cylinder(p1=[-1, 0, 0], p2=[1, 0, 0], radius=3),
body2= sphere(center=[2, 2, 0], radius=1.5),
body3=revolution(p1=[5, 1, 1], p2=[7, 1, 1], radius=[2, 4, 3],
offsets=[0, 0.62, 1.0])>

Component geometries can be specified in terms of cylinders, spheres, bodies of revolution, or a list of planes. The
table below contains examples of how to specify a component geometry of each type.

7.3. Control File Setup 45

Loci-Stream, Release 2.1.9

Table 2: Types of primitives for defining a componentGeometry speci-
fication.

Variable Description
cylin-
der(p1,p2,radius)

p1 and p2 define two end points of the cylinder axis and radius specifies the cylinder radius.

sphere(center,radius)center and radius define the sphere’s center and radius.
revolu-
tion(p1,p2,radius,offsets)

Defines a body of revolution about an axis defined by points p1 and p2. radius specifies a list of
radii along the axis between p1 and p2. offsets provides a list of the relative distance between p1
and p2 that the associated radii corresponds to.

planeList(list=[plane(p,n),. . .])Defines a region that is on the left side of all the planes in the list. A plane is defined by a point, p,
and a normal vector, n. The normal vector points out of the volume.

Examples of the component geometry forms described in the table above are show below.

A cylinder with an x-axis orientation from x=1 to x=2 with a radius of 0.5:

cylinder(p1=[1,0,0], p2=[2,0,0], radius=0.5)

A sphere centered at the origin with a radius of 1.5:

sphere(center=[0,0,0], radius=1.5)

A body of revolution with an x-axis orientation from x=1 to x=4.

revolution(p1=[1,0,0], p2=[4,0,0], radius=[3,2,4], offsets[0.0,0.6,1.0])

The body of revolution specification can be difficult to understand, so a diagram showing how each argument corre-
sponds to a practical example is shown in below.

Fig. 8: Body of revolution diagram showing the important quantities that must be specified in the componentGeometry
entry.

A cube of edge length 1 centered at the origin:

planeList(list=[
//x-coordinate planes
plane(p=[1.0,0,0],n=[1,0,0]),plane(p=[-1.0,0,0],n=[-1,0,0]),
// y-coordinate planes
plane(p=[0,1.0,0],n=[0,1,0]),plane(p=[0,-1.0,0],n=[0,-1,0]),
// z coordinate planes
plane(p=[0,0,1.0],n=[0,0,1]),plane(p=[0,0,-1.0],n=[0,0,-1])

])

46 Chapter 7. Simulation with Overset Grids

Loci-Stream, Release 2.1.9

7.3.4 Component Motion
The overset module supports grid motions of the overset grids. This grid motion is not restricted solely to overset
simulations, but this section is included here because often overset and grid motion are used together. The run control
file entry for using moving grids is shown below for a case of a background and single component.

componentMotion:
<
moving_part=prescribed,
background_mesh=stationary

>

Three options are available to be assigned to each mesh tag in the run control file. The prescribed assign-
ment means that the motion will be provided by an external input file. A rotation assignment can be given of
the type rotation(axis=[1,0,0],center=[0,0,0],speed=400 rpm). The non-moving mesh should have the
stationary assignment.

Any component mesh that is given the prescribed keyword in the run control file needs to have a corresponding file
named motion_<meshTagName>.dat present at the same location at the run control

The elements of the motion file are described in the table below.

Field Description
Number of inter-
polants

Number of interpolant inputs in the motion file

Time Time in seconds
Position Position in meters (3 components: x, y, z)
Quaternion Four components of a normalized quaternion describing rotations about the preceding po-

sition

A cubic spline is used to interpolate between the given values. A discontinuity in the spline can be created if the
condition for the same time is repeated twice.

A sample motion file is shown below. This one specified a translation in the x-direction of 63.5 mm in a span of 6
milliseconds. Note that the final digit of the quaternion should be 1.0 unless you are familiar with quaternions.

3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.006 0.0 0.0635 0.0 0.0 0.0 0.0 1.0
10 0.0 0.0635 0.0 0.0 0.0 0.0 1.0

7.3.5 Output Variables
• The table below shows additional field variables that are available for output in overset flow simulations. Default

variables are output automatically and do not need to be specified in the plot_output line in the run control
file.

Table 3: Field Variable Output for Overset Simulations

Variable Description Default
No current outputs for overset module supported

7.3. Control File Setup 47

Loci-Stream, Release 2.1.9

7.4 Creating the Overset VOG Mesh with Tags
Overset meshes have multiple distinct meshes, but a single vog formatted mesh file is still required when using the
overset module. This means that all the grids that compose the background and component meshes must be encoded
into a single vog mesh file. Consider a case where a background mesh called backgroundMesh.vog and a component
mesh called componentMesh.vog are to be used for an overset simulation. The following Loci utility is used to merge
these two meshes into a single vog mesh named mergedMesh.vog with tags assigned to each mesh.

vogmerge -g backgroundMesh.vog -tag background -g componentMesh.vog-tag component -o
mergedMesh.vog

The tags are important because they are what is used to reference the difference meshes when describing the different
components in the run control file. The tag names are arbitrary.

7.5 Known Issue with Overset Module & Hole Cutting
While using the overset module you may notice a situation in your domain where there are gaps in the domain: cells
missing like what is shown in the figure below. This is very often an effect of an interaction in the Loci framework
between the componentGeometry specification provided in a run control file and the mesh of a component. The
hole cutting (removal of cells) is done to save computational resources because there is no reason to simulate cells in
the background mesh that would be wholly contained within body of a component mesh. The componentGeometry
specification is what informs the overset algorithm about which cells are potentially within the body of a component
mesh’s geometry, and it is this specification which often leads to situations like what is shown below.

Fig. 9: A y-plane cute that is made through a domain to illustrate the hole cutting issue.

The region with the missing cells can be seen better in the image shown below, which is a top view of the plane cut
shown above. In this figure, the component geometry was set to a large diameter (seen as the gap on the far-right side)
for illustrative purposes. The gap seen on the left semicircular region is where the issue being discussed occurs.

The blanking of the cells close to the interface boundary of a component mesh reduces the amount of usable grid near the

48 Chapter 7. Simulation with Overset Grids

Loci-Stream, Release 2.1.9

Fig. 10: Overset hole cutting leaving a gap over on the left between the plug and valve. The hole on the right was
expected to be there due to the component geometry being set to that location.

overlap region and this interacts with the Loci framework’s medial cut procedure which causes there to be insufficient
overlap to fully connect the grid system. For this illustration, if the radius of the componentGeometry cylinder in
this example is reduced from 0.056m to 0.047m, then there is sufficient overlap to prevent the gap. The user should
err on the side of greater overlap between the component mesh’s interface boundary and componentGeometry
specified surface. This can be done in this case either by slightly increasing the grid resolution in the overlap region
to allow more cells to overlap, or by keeping the same resolution and pushing the componentGeometry further away
from the interface as changing radius from 0.056m to 0.047m does in this example.

Another alternative approach to alleviate this issue is to simply extend the actual spatial extent of the component
mesh to extend completely outside of the background mesh. This is more costly than the example above but may be
an effective and fast solution for cases where adjusting the component geometry specification continues to cause issues
with the gaps in the mesh.

7.6 Visualizing the iblank state of a simulation
A vars file option plot_overset_freq is available. This operates on the same principle as the plot_output vars
file variable. If this variable is included, the output will be .csv files. There will be one file at each timestep output
for each iblank state.

A helpful thing to keep in mind is that the iblank=3 cells are often ones outside of the domain, or within a component’s
geometry. For the purposes of illustration, we will consider the case of a simple valve and plug configuration as shown
below. The valve is the orange and is the background mesh, and the plug is the blue and is the component geometry.

Any overset simulation can be visualized using Paraview. Note: This visualization is for determining the state of
the cells of the overset meshes in the event any debugging may be necessary. The standard extract utility works
for overset simulations and presents the cumulative picture of the overset interpolating/hole cutting algorithm.
The method for examining overset cell marker data in Paraview is:

7.6. Visualizing the iblank state of a simulation 49

Loci-Stream, Release 2.1.9

Fig. 11: The left cut-plane shows the effect of setting the componentGeometry surface too close to the location of
the boundary of the mesh for the component. On the right, the componentGeometry boundary definition was moved
inwards, which allowed for more of an overlap region between the background mesh cells and the component mesh.

Fig. 12: 2D valve overset domain. Blue is the plug, and orange is the fluid(background) domain.

50 Chapter 7. Simulation with Overset Grids

Loci-Stream, Release 2.1.9

1. Load the CSV file into Paraview (make sure to set the Field Delimiter Characters option to be a space)

2. Apply a Table to Points Filter to the loaded dataset.

3. Select the X Column, Y Column, and Z Column to be the x, y, z headers from the CSV file. If the file was read
correctly in Step 1, the dropdown menu should show you x,y,z as data you can select for this part.

It is recommended to load both geometry files (fluid background mesh and plug component mesh) into Paraview along
with the CSV data loaded using the process outlined above. Careful attention must be paid to which cells centers the
red and green dots are aligned with. In the image below, if the red dots align with the cell centers of the left grid, then
they are representing the iblank=3 state of the fluid mesh cells.

Fig. 13: Side-by-side image of the iblank dataset (red and green dots) overlayed on the fluid(left side) and plug(right
side) meshes.

Fig. 14: Left is the fluid mesh, and right is the plug mesh. Note the alignment of the red and green cells on the left and
right meshes.

In the image aboe, the left image is the background fluid mesh, and the right images if the plug component geometry
mesh. As was mentioned earlier, this image was created by loading the background fluid mesh, and the plug overset
mesh separately into Paraview and displaying the iblank dataset over both grids. This is the region where the plug
intersects the fluid mesh, on the left side of the plug. The vertical red/green lines that represent the background fluid

7.6. Visualizing the iblank state of a simulation 51

Loci-Stream, Release 2.1.9

mesh’s boundary layer are helpful for visually estimating where the plug is located on the background mesh. The
background mesh cells that are within the plug’s no-slip surface boundary are marked with iblank=3. There is also
a region around the plug akin to a buffer layer that is specified using the componentGeometry vars file specification
which cuts out any of the background mesh that is contained within the boundaries of its specification. Ideally in this
example, we only need an overlapping region of cells near where the outer boundary of the plug mesh’s grid is, so if the
plug mesh has a much larger mesh compared to the geometry that is represented by the plug, the componentGeometry
can be specified to remove additional cells.

Going back the left image, therefore the red markers don’t follow a simple straight line upwards. Because the
compoenentGeometry is defined to be offset from the actual plug surface.

On the left image there are green markers that are aligned with the background mesh. These are iblank=2 cells.
They are cells that are receiving their values from the iblank=0 cells that are used to make up the cloud of points for
interpolation.

52 Chapter 7. Simulation with Overset Grids

CHAPTER

EIGHT

PIMPLE MODULE

Stream has a module that provides users with the option to utilize the PIMPLE algorithm for their simulation. This
capability is enabled by inserting the following loadModule directive into the run control file as shown below.

loadModule: pimple
{
... standard run control file content

}

The following sections discuss the PIMPLE method used in Stream and provide information on the run control file
variables required to perform simulations with the PIMPLE module.

8.1 PIMPLE Algorithm
The PIMPLE algorithm that is implemented in Stream uses a combination of the SIMPLE and PISO algorithms. The
SIMPLE algorithm being tuned for solving steady-state problems and the PISO algorithms being particularly suited for
unsteady problems. The combination of the two algorithms allows for the larger timestep permitted by SIMPLE and
the speed of the PISO to be combined into a hybrid algorithm. The figure below outlines the PIMPLE algorithm as it
is implemented in Stream.

8.2 Control File Setup
Only a few additions need to be made to an existing run control file to set up a simulation using the PIMPLE module.

8.2.1 Numerics
From PIMPLE diagram above, we can see that the PIMPLE algorithm involved a SIMPLE-type predictor step, and a
PISO-type corrector stage. The run control file variable that controls the total number of times that the algorithm goes
through the SIMPLE+PISO stages is the standard numIterationsPerTimeStep variable. This value can be set as
usual, but with the PIMPLE module, usually the value of the variable is a fraction of what would typically be used
when running with just SIMPLE. The number of times that the PIMPLE algorithm iterates on the pressure correction
equation using the PISO corrector can be controlled by the run control file variable shown below. Note: there is not
default value, so you must include this in the run control file if the pimple module is loaded.

numCorrectorIterations: 1

The recommendation is to use only one corrector iteration unless cavitation equations are being solved. In that case,
two corrector iterations are required for stability. Another feature that is available in the pimple module is the ability
to control which equations are included in the explicit corrector step in the PISO corrector stage and can be specified
in the run control file as shown below.

explicitCorrectorEquations: <cavitation, energy, turbulence>

53

Loci-Stream, Release 2.1.9

Fig. 1: Summary of the PIMPLE algorithm for compressible flows that is implemented in stream.

54 Chapter 8. PIMPLE Module

Loci-Stream, Release 2.1.9

Including cavitation includes the vapor mass fraction and NCG mass fraction equations. The energy option
includes either the temperature, total enthalpy, or total energy equations depending on the form= value in the
energyEquationOptions run control file variable. The turbulence keyword includes the k equation and either the
epsilon or omega equations, depending on the turbulence model specified in the turbulenceEquationOptions
run control file variable.

A final variable determines the form of the volume flux that is used in the corrector. It is set by the
correctorVolumeFluxForm variable in the run control file and has the value of old and new. An example of the
specification specification for this variable is shown below (default shown).

correctorVolumeFluxForm: new

A practical matter regarding the pimple module that user should consider is that the PIMPLE algorithm is more ag-
gressive than the SIMPLE algorithm when solving equations, which may result in numerical instability if the PIMPLE
algorithm is used for cases with bad initial pressure field guesses. An easy fix is to run a simulation with a bad initial
condition using SIMPLE for several timesteps and then restart and switch to the PIMPLE module.

8.2.2 Output Variables
The table below shows additional field variables that are available for output in PIMPLE simulations. Default variables
are output automatically and do not need to be specified in the plot_output line in the run control file.

Table 1: Field Variable Output for PIMPLE Module

Variable Description Default
No current outputs for PIMPLE module supported

8.2. Control File Setup 55

Loci-Stream, Release 2.1.9

56 Chapter 8. PIMPLE Module

CHAPTER

NINE

POROUS MEDIA MODULE

To use the porous media module, the run control file should appear as follows:

loadModule: porous
{
... standard vars file content
}

9.1 Armour Cannon Cady (ACC) Mesh Model
The mesh model based on the work of Armour, Cannon, and Cady [ArCa1968] [Cady1973] (ACC) is one of the
available mesh models that can be applied to regions of the domain. The model adds a source term to the momentum
equation to account for the effect of the porous media on the flow. The source term is given by the following expressions:

𝐾𝑙 = 2.0 ·
(︂

𝐵

𝐵𝐶𝐹𝐷

)︂
· 𝑎𝑙𝑝ℎ𝑎 ·𝑄 ·

(︂
𝜇

𝜌

)︂
· 𝑎2

𝐾𝑞 = 2.0 ·
(︂

𝐵

𝐵𝐶𝐹𝐷

)︂
· 𝑏𝑒𝑡𝑎 ·𝑄 · 1

𝐷𝑝

SourceTerm =
(︁ 𝜌

2 · 𝜖2
· (𝐾𝑙 +𝐾𝑞 · ‖𝑣‖)

)︁
· 𝑣

where 𝜌 is the fluid density, 𝜇 is the dynamic viscosity of the fluid, and 𝑣 is the velocity vector.

These parameters can be specified in the run control file using the names shown in the table below.

Table 1: Armour, Cannon, and Cady (ACC) Model Source Term Tunable
Parameters

Variable Description Default Value
a Screen surface area to volume ratio None
B Empirical constant None
BCFD Empirical constant None
Dp Hydraulic pore diameter None
Q Mesh tortuosity factor None
alpha Empirical constant None
beta Empirical constant None
epsilon Screen void fraction None

The ACC model can be selected by specifying ACC as a mesh model type in the porousScreens variable as shown
below.

57

Loci-Stream, Release 2.1.9

porousScreens: <
mesh1=ACC(a=510235, B=0.000089, BCFD=1000.0, Dp=0.000005, Q=1.3, alpha=3.2, beta=0.

→˓19, epsilon=0.245)
>

9.2 Numerically Determined Resistance (NDR) Mesh Model
The mesh model is an engineering model with numerically determined resistance (NDR). The model adds a source
term to the momentum equation to account for the effect of the porous media on the flow. The source term is given by
the following expressions:

SourceTerm =

(︂
0.5 · 𝜌 · ‖𝑣‖ ·𝐾𝑞

𝜖2

)︂
· 𝑣

These parameters can be specified in the run control file using the names shown in the table below.

Table 2: Numerically Determined Resistance (NDR) Model Source Term
Tunable Parameters

Variable Description Default Value
Kq Empirical Constant None
epsilon Screen void fraction None

The NDR model can be selected by specifying NDR as a mesh model type in the porousScreens variable as shown
below.

porousScreens: <
NDR(Kq=1742.782, epsilon=0.4)

>

9.3 Control File Setup
A porous media set of variables must be defined in the run control file. These definitions are used to specify the
locations of the porous media screens and the parameters that define the porous media model used for the porous media
regions. The following section shows an example specification of the porous media variables in the run control file.

porousScreens: <
mesh1=ACC(a=510235, B=0.000089, BCFD=1000.0, Dp=0.000005, Q=1.3, alpha=3.2, beta=0.19,␣

→˓epsilon=0.245),
mesh2=NDR(Kq=1742.782, epsilon=0.4),
screens=[
box(center=[5.0,0.5,0.05], axis1=[1.0,0.0,0.0], axis2=[0.0,1.0,0.0], w1=0.1, w2=1.0,␣

→˓w3=0.1, material=mesh2)
]

>

In the above specification of the porousScreens variable, the mesh1 and mesh2 variables are used to define the
different types of mesh models that can be used in the porous media regions. The screens variable is used to define
the regions of the domain where the porous media models are applied. The available supported screen geometries are
detailed in the following section.

58 Chapter 9. Porous Media Module

Loci-Stream, Release 2.1.9

An additional run control file variable named porositySourceOptions can be used to specify whether to use an
implicit or explicit source term treatment for the porous media model. The calculation type of the source term can also
be specified to use a standard or conservative approach. The two methods are:

• The standard method, which evaluates the source term at the cell center, specified using standard.

• Mencinger’s conservative method which requires a face evaluation of the porosity source term per unit volume,
specified using conservative.

An example of specifying the source term treatment and the source term computation is shown below.

porositySourceOptions: <implicit, conservative>

The default values for the source term treatment and the source term computation are implicit and conservative,
respectively.

9.3.1 Screen Geometries
Circular Screen

The circular screen type is specified using the circle keyword in the screens variable. The parameters for the circular
screen are the radius, center, and normal vector to the plane of the circular screen. The parameters are shown in the
table below.

Parameter Unit Description
radius m Radius of the circular screen.
center m Center point of the circular screen.
normal Normal vector to the plane of the circular screen.

An example of specifying a circular screen is shown below.

circle(radius=1.0, center=[0.0, 0.0, 0.0], normal=[0.0, 1.0, 0.0],
material=mesh1)

Cylindrical Screen

The cylindrical screen type is specified using the cylinder keyword in the screens variable. The parameters for the
cylindrical screen are the radius, length, center, and axis vector along the length of the cylinder. The parameters are
shown in the table below.

Parameter Unit Description
radius m Radius of the cylindrical screen.
length m Length of the cylindrical screen.
center m Center point of the cylindrical screen.
axis Axis vector along the length of the cylinder.

An example of specifying a cylindrical screen is shown below.

cylinder(radius=1.0, length=1.0, center=[0.0, 0.0, 0.0], axis=[0.0, 1.0, 0.0],
material=mesh1)

9.3. Control File Setup 59

Loci-Stream, Release 2.1.9

Box Screen

The box screen type is specified using the box keyword in the screens variable. The parameters for the box screen are
the width along the three axes, center, and two axis vectors defining the edges of the box. The parameters are shown in
the table below.

Parameter Unit Description
w1 m Width of the box along axis1.
w2 m Width of the box along axis2.
w3 m Width of the box along axis3 (automatically determined by the cross

product of axis1 and axis2).
center m Center point of the box screen.
axis1 First axis vector defining one edge of the box.
axis2 Second axis vector defining another edge of the box perpendicular

to axis1.

An example of specifying a box screen is shown below.

box(center=[0.0, 0.0, 0.0], axis1=[1.0, 0.0, 0.0], axis2=[0.0, 1.0, 0.0], w1=1.
0, w2=1.0, w3=1.0, material=mesh1)

9.3.2 Output Variables
The table below shows additional field variables that are available for output in simulations that use the porous media
module. Default variables are output automatically and do not need to be specified in the plot_output line in the run
control file.

Table 3: Field Variable Output for Porous Media Flows

Variable Description Default
screenNumber Screen integer identification No

References

60 Chapter 9. Porous Media Module

CHAPTER

TEN

APPENDICES

10.1 Appendix: Time Integration
The run control file variables that control the time integration of the system of governing equations are discussed in the
following subsections.

10.1.1 Integration Method
The time-integration method used in Stream is specified with the run control file variable timeIntegrator. Three
methods are available. The first method is the standard first-order backward differencing method. This method can be
chosen by using the value BDF. If the timeIntegrator variable is not specified in the vars file, the value BDF is chosen
by default. This method is commonly used for marching simulations to a steady-state condition, but is not generally
acceptable for unsteady flows due to the requirement for excessively small time steps in order to reduce numerical
dissipation. For unsteady flows, Stream offers two second-order differencing methods. The first of these methods is
the second-order backward differencing method, which can be chosen by using the value BDF2. The second is the
Crank-Nicolson method, which can chosen by using the value CN. An example of setting the time integrator in a run
control file is shown below.

timeIntegrator: BDF2

Blended Crank-Nicholson Method

While both the BDF2 and CN are formally second-order accurate methods, CN has been found in our experience to be
less dissipative than BDF2. However, the pure CN scheme is not always robust for complex flows unless very small
timesteps are used, which can lead to prohibitive run times. To mitigate this problem, STREAM provides a blended
CN/BDF scheme, which is activated by a blending factor using the run control file variable CNBDFBlend, when using
the CN time itegrator. This blending factor can be set anywhere between 0 (resulting scheme is 100% BDF) and 1
(resulting scheme is 100% CN). If this variable is not provided, the value defaults to 1. In practice, it has been found
that blending factor above 0.9 can help stabilize the CN scheme at higher time step, while still providing slightly lower
dissipation characteristics than BDF2. An example of using the blending factor is shown below.

CNBDFBlend: 0.9

For finite-rate chemistry simulations, Stream uses a second-order Strang-splitting procedure, which is not compatible
with the specification of BDF2 for the timeIntegrator variable. For unsteady DES and LES simulations with Stream,
one should always use the CN scheme with the highest stable value of the variable CNBDFBlend as possible.

10.1.2 Time Step Selection
The time step for a simulation can be set in two different ways. To run a simulation with a single constant time step
value, use the run control file variable timeStep in the following manner:

timeStep: 1.0e-01

61

Loci-Stream, Release 2.1.9

If one is interested in only a steady-state solution, often the best approach is to simply eliminate the temporal terms
from the governing equations by specifying a large time step value, say 1.0e+30, which is the default value for this
variable. One can then control the iterative process by only using the relaxation factors specified via the variables for
the individual governing equations. This is the preferred method for steady-state flows. As a measure of last resort
however, one can use a finite time step to perform temporal relaxation, which can often be effective at stabilizing a
convergence path where iterative relaxation alone is not sufficient.

A second method of setting the time step is also available, whereby one can specify several so-called ramps in which
the time step remains at a fixed value for a certain number of time steps before moving to a new ramp value. At the end
of this process the time step will take on the value specified by the variable timeStep. Consider the following vars
file specification:

Listing 1: time step ramp

timeStep: 1.0e-01
timeStepRamp: <ramp0=[n=1000,dt=1.0e-04],ramp1=[n=100,dt=1.0e-03],
ramp2=[n=10,dt=1.0e-02]>

In this case, the simulation will start off by performing 1000 time steps at 𝑑𝑡 = 10−4𝑠, followed by 100 time steps
at 𝑑𝑡 = 10−3𝑠, followed by 10 time steps at 𝑑𝑡 = 10−2𝑠, and then assume the constant value of 𝑑𝑡 = 10−1𝑠 for the
remainder of the simulation. It is important to note that the time step ramp will be active if the time step number in the
simulation is lower than the total number of time steps in the ramp. So, for example, using the case above, if one ran a
simulation of 1000 time steps and then stopped, upon restart the time step ramp would proceed to immediately do 100
time steps at 𝑑𝑡 = 10−3𝑠, followed by 10 time steps at 𝑑𝑡 = 10−2𝑠 and then use the constant value of 𝑑𝑡 = 10−1𝑠 for
the remainder of the restart simulation. On the other hand, if one had run a simulation with 2000 time steps and then
stopped, upon restart, the time step ramp would no longer be active, having stopped at time step 1110. One may use
an arbitrary number of ramps. In addition, the names of the ramps (ramp0, ramp1, . . .) are not important. One can
choose any names. Only the order of the ramps is important.

10.1.3 Number of Time Steps
The number of time steps to run in the simulation is specified by the run control file variable numTimeSteps, as follows:

numTimeSteps: 1001

Once a simulation is initiated, it will not terminate until the number of specified time steps is run. If one wishes to
terminate the solution at an arbitrary point in an orderly manner before the maximum number of time steps specified by
numTimeSteps has been executed, one can use the so-called touch stop utility, by simply executing the command
touch stop while in the directory from which the simulation was initiated. This will create a file called stop in the
directory. When the code detects the presence of this file, it will terminate in an orderly manner, writing both output
and restart files at the last time step executed. The code will automatically delete the file stop so that it will not linger
around and cause problems with future runs from the same directory.

A maximumRunTime variable is also available in the run control file to specify the maximum wall time for the simula-
tion. If the simulation exceeds this time, it will terminate in an orderly manner and write out restart files. Default units
are seconds. Some examples of specifying a maximum run time are shown below.

Listing 2: maximum run time

maximumRunTime: 3600

maximumRunTime: 5 minute

maximumRunTime: 2.5 hour

maximumRunTime: 1 day

62 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

A maximumSimulationTime variable is also available in the run control file to specify the maximum simulation time
for the simulation. If the simulation exceeds this time, it will terminate in an orderly manner and write out plot and
restart files. Default units are seconds, and the variable can be specified with various units as shown in the example
above.

10.1.4 Time Step Convergence
To achieve the proper temporal accuracy of a time integration scheme, one must converge the system of equations
within each time step to the level required to eliminate the iterative (SIMPLE) or corrective (PIMPLE) error. The
topic of convergence estimation is discussed in more detail here. Convergence within any time step is controlled using
the run control file convergenceTolerance and maxIterationsPerTimeStep variables. Two type of convergence
specification are available. If one wishes to have a single absolute tolerance value for all governing equations, the
following specification should be used (default values shown):

Listing 3: convergence tolerance

convergenceTolerance: 1.0e-30
maxIterationsPerTimeStep: 50

Using this form, if the total residuals (the residual values printed to standard output) at an iteration all become lower
than the value specified by convergenceTolerance, the code will automatically advance to the next time step after
that iteration. If such a convergence level is not obtained within the maximum number of iterations specified by the
value of maxIterationsPerTimeStep, the code will in any case advance to the next time step. Note that the variable
convergenceTolerance can only be effectively used if residuals have been normalized using reference values, as
discussed here. Common practice is normally to forego the usage of convergenceTolerance by setting its value to a
small number, say 10−30, and simply using the variable maxIterationsPerTimeStep to control convergence within
the time step. This is done generally to avoid the complication of having to compute reference values that provide
meaningful nondimensionalization of all total residuals simultaneously. In addition, for engineering geometries, it is
often impossible to achieve a consistent convergence tolerance limit on all residuals at every time step. For steady-state
simulations, one would typically run a fixed number of time steps by setting values like the following:

Listing 4: steady-state simulation

convergenceTolerance: 1.0e-30
maxIterationsPerTimeStep: 1
numTimeSteps: 500

To control convergence within the time step in a more refined manner, one can use the run control file absolute and
relative convergence tolerance variables as follows (all possible specifiable tolerances shown):

Listing 5: individual equation convergence criteria

convergenceAbsoluteTolerance: <default=1.0e-03, momentum=1.0e-04, pressure=1.0e-05,
energy=1.0e-06, k=1.0e-07, omega=1.0e-03, epsilon=1.0e-04,

→˓ species=1.0e-02>

convergenceRelativeTolerance: <default=1.0e-03, momentum=1.0e-04, pressure=1.0e-04,
energy=1.0e-04, k=1.0e-04, omega=1.0e-04, epsilon=1.0e-04,

→˓ species=1.0e-04>

maxIterationsPerTimeStep: 100

In the above options, the default value is first assigned to all governing equations. Subsequent entries for each of the
specific governing equations are then specified to override the default value, if desired. If one does not specify a default
value, the default value for the default value is 10−30. One need only specify override tolerance values for the specific

10.1. Appendix: Time Integration 63

Loci-Stream, Release 2.1.9

equations of interest. For example, one could specify an absolute convergence tolerance of 10−3 for all equations, but
a tolerance of 10−4 for pressure, as follows:

Listing 6: specific absolute tolerance on pressure, generic on all other
equations

convergenceAbsoluteTolerance: <default=1.0e-03, pressure=1.0e-04>

One may use convergenceAbsoluteTolerance and convergenceRelativeTolerance either separately or to-
gether. For example, to specify that convergence is to be determined by the satisfaction of only relative tolerances, one
would specify:

Listing 7: specific relative tolerance on pressure, default on all other equa-
tions

convergenceRelativeTolerance: <default=1.0e-03, pressure=1.0e-04>

This specification is equivalent to the following:

convergenceAbsoluteTolerance: <default=1.0e-30>
convergenceRelativeTolerance: <default=1.0e-03, pressure=1.0e-04>

whereby the small default absolute convergence tolerance guarantees that absolute convergence is never satisfied, and
only relative convergence determines convergence within the time step. Convergence within a time step is declared
when all the active governing equations are individually converged. Convergence for any governing equation is
declared when either the absolute tolerance or the relative tolerance is satisfied. If all active governing equations
have not converged within the maximum number of iterations specified by the value of maxIterationsPerTimeStep,
the code will automatically advance to the next time step.

10.2 Appendix: Initial Conditions
The run control file variables that are used to specify initial conditions for a simulation are discussed in the following
subsections.

10.2.1 Uniform Initial Conditions
The most basic method of assigning initial conditions is to assign uniform conditions throughout the entire domain using
the initialCondition variable in the run control file. An example of this is shown below for an incompressible,
turbulent flow. Such a problem requires the specification of the initial state for the density, pressure, velocity and
turbulence quantities. Here we assume that a k-omega turbulence model is in use. We note that for any given flow
problem, additional variables that are specified beyond what is necessary will be ignored.

64 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 8: incompressible, turbulent, uniform initial condition

initialCondition:<rho=1.0 kg/m/m/m, p=10.0 atm, v=0.0 m/s, k=0.001, omega=1000.0>

The table below summarizes all variables for the main code that can be specified, as well as their definitions and default
units. Additional variables for the various Stream modules are described in their respective chapters of this document.

Table 1: Variable Specification for initialCondition

Variable Description Default Units

rho Density 𝑘𝑔
𝑚3

p Pressure 𝑃𝑎
T Temperature 𝐾
mixture Species mass fractions
v Velocity 𝑚

𝑠

k Turbulent kinetic energy 𝑚2

𝑠2

omega Specific turbulent dissipation rate 𝑠−1

epsilon Turbulent Dissipation rate 𝑚2

𝑠3

For compressible flows of a pure substance, two thermodynamic properties must be specified to establish the thermody-
namic state for an initial condition. In Stream, this is done exclusively using the pressure and temperature. Given these
two quantities, the initial conditions for other derived thermodynamic quantities such as density and specific internal
energy are determined from the equation of state that is being employed in the simulation. Shown below is a typical
uniform initial condition specification for a turbulent, compressible flow of a pure substance.

Listing 9: compressible, turbulent, pure substance, uniform initial condi-
tion

initialCondition: <p=10.0 atm, T=1000.0 K, v=1.0 m/s, k=0.001, omega=1000.0>

An initial condition for compressible, turbulent flow of a mixture material is similar specified, however one must now
also provide an initial condition for the composition, which in Stream is given by the mixture species mass fractions,
as shown below.

Listing 10: compressible, turbulent, mixture material, uniform initial
condition

initialCondition: <p=10.0 atm, T=1000.0 K, v=1.0 m/s, k=0.001, omega=1000.0,
mixture=[H2=0.1, O2=0.1, H2O=0.8]>

The names of the species provided in the mixture specification must match those given in the .mdl file which specifies
the mixture material. Species in the mixture material that are not explicitly assigned in the initial condition are given
a default value of zero.

10.2.2 Left and Right State Initial Conditions
An initial condition with uniform left and right states may be needed for some problems. The run control file vari-
ables ql and qr are used to specify these states. The specification for ql and qr is identical to that shown above for
initialCondition. The left and right initial condition states are separated by a plane whose location is specified at
a midpoint by using either the variable xmid, ymid or zmid. If a midpoint is not specified in the vars file, the default
specification is xmid with a value of zero in which case the y-z plane through the origin is the surface separating the
left and right uniform initial condition states. If ymid is specified, then the cutting plane is an x-z plane located at the
ymid value, while if zmid is specified, the cutting plane is an x-y plane located at the zmid value.

10.2. Appendix: Initial Conditions 65

Loci-Stream, Release 2.1.9

With the location of the cutting plane specified, the left state, ql, is used for all cells with a cell-center coordinate
less than the specified midpoint coordinate value. The right state, qr, is used for cells with a cell-center coordinate
greater than the specified midpoint coordinate value. The following example shows a typical specification for a laminar
compressible flow of a mixture material.

Listing 11: compressible, mixture material, hydrogen/oxygen initial con-
dition split at x=0.5

ql: <p=10.0 atm,T=1000.0 K,v=0.0 m/s,mixture=[H2=1.0]>
qr: <p=1.0 atm,T=300.0 K,v=0.0 m/s,mixture=[O2=1.0]>
xmid: 0.5

10.2.3 Initial Condition Regions
It may be desirable to assign different initial condition values to different regions of the computational domain. For
example, one may have a pipe with a 90-degree bend. In this case, if one wished to assign an initial condition for velocity
that is parallel to the walls of the pipe, one would need to be able to independently specify two different conditions.
Stream provides a general capability based on geometric primitives (shapes) that allows the user to specify an arbitrary
number of initial condition states over various regions of the entire domain. This specification is accomplished with
the run control file variable initialConditionRegions. To illustrate the use of this feature, consider the example
specification below for a compressible flow of a mixture material:

Listing 12: compressible, mixture material, hydrogen/oxygen initial con-
dition by region

initialConditionRegions:<
default=state(u=0.0m/s, p=1atm, T=298K, mixture=[N2=1.0]),
hydrogen=state(u=0.0m/s, p=1atm, T=400K, mixture=[H2=1.0]),
oxygen=state(u=0.0m/s, p=1atm, T=200K, mixture=[O2=1.0]),
regions=[inBox(p1=[0,0,0], p2=[1,1,1], composition=hydrogen),
inSphere(radius=0.1m, center=[0.5,0.5,0.5], composition=oxygen)] >

In this example, the default state is first used to assign values to every cell in the computational domain. The regions
that are subsequently defined are processed in order of appearance, each overwriting the state of the cells contained
inside the region. Thus, for this example, the default state is replaced by the hydrogen state for cells inside the
defined box and then the cells contained inside the defined sphere are assigned the oxygen state.

The table below contains a complete listing of the variables for the main code that can specified inside
initialConditionRegions. As with the other initial condition specifications above, consistent units other than
the default units may be specified, in which case numeric values are converted internally to the default units for use in
the code. If units are not specified for a quantity, the default units for that quantity are assumed.

Table 2: Variables for Initial Condition Regions Input

Variable Description Default Units

rho Density 𝑘𝑔
𝑚3

p Pressure 𝑃𝑎
T Temperature 𝐾
mixture Species mass fractions
u Velocity 𝑚

𝑠
M Mach Number
k Turbulent kinetic energy 𝑚2

𝑠2

omega Specific turbulent dissipation rate 𝑠−1

epsilon Turbulent Dissipation rate 𝑚2

𝑠3

66 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

The geometric primitives that are currently supported for initialConditionRegions are shown in the table below.

Table 3: Geometric Primitives for Initial Condition Regions Input

Prim-
itive

Description

inBox Takes two arguments p1 and p2, which define two diagonally opposing corners of the box.
inSphereTakes two arguments, radius, and center, which define respectively the size and location of the sphere.
inCylinderTakes three arguments, radius which defines the cylinder radius, and the points p1 and p2, which define the

endpoints of the axis of the cylinder.
inCone Takes four arguments, p1 and p2 which define the endpoints of the axis of the cone, and r1 and r2 which

define the radius of the cone at the locations p1 and p2, respectively.
leftPlaneTakes two arguments, point, which defines a point on the plane, and normal, which defines a vector normal

to the plane. The region included in this primitive is the semi-infinite region on the side of the plane away
from the direction of the specified normal.

10.2.4 Interpolated Initial Conditions
Often after running a simulation for a particular geometry, one decides that a refined mesh is required. In this case,
one can use the solution obtained from the old simulation as an initial guess for the new simulation by using the
interpolateInitialConditions variable in the run control file as follows:

Listing 13: puT interpolated initial condition

interpolateInitialConditions: put.1000_cavity

When running a simulation, if the user has included the variable put in the plot_output line of the run control
file, Stream writes out what is known as the puT file in the output directory along with other output files according
to the value of the run control file variable plot_freq. In the above example, the value 1000 indicates the time-step
number at which data was written in the previous simulation, and the name cavity is the case name of the previous
simulation. The puT file (the name is an acronym for pressure(p), velocity(u), and temperature(T)) contains all the basic
flow variable information associated with the run, including velocity, pressure, temperature, species, and turbulence
data if the simulation is employing a turbulence model.

If one is running a new case in which the type of simulation remains constant but the grid has changed, then one simply
needs to select any puT file from a previous run and use it in the above manner. Note that the name of the puT file
specified in the new run must include the complete path to the file. However, if the simulation type changes between
runs, there are a few special cases of interest which require additional input, the details of which follow:

• Consider the case of using a puT file (compressible or incompressible) to restart to an incompressible simulation.
The density is not stored in a puT file, and there is no equation of state for an incompressible flow; therefore, the
variable initialCondition must be used to provide the value for density. All required values for an incom-
pressible flow simulation (density, velocity, and pressure) must be specified in initialCondition, but only
the value of density will be taken from this variable. All other values will be obtained from the file specified by
interpolateInitialConditions.

• For using an incompressible puT file as an initial condition to a new compressible run, one must use the variable
initialCondition to provide the value for the initial temperature. This is because the value for temperature
in any incompressible puT files is zero, which is non-physical for compressible flow. A complete specification
for initialCondition appropriate for compressible flow must be given, but only the temperature value will
be used.

10.2. Appendix: Initial Conditions 67

Loci-Stream, Release 2.1.9

10.3 Appendix: Boundary Conditions
Boundary conditions are specified by using boundary_conditions run control file variable, an example of which is
shown below.

Listing 14: run control file boundary condition specification example

boundary_conditions:
<
Inlet=totalPressureInlet(p0=135.0 psi, T=164 R, k=0.05, omega=282.46, incompressible),
IPipe=noslip(adiabatic),
OPipe1=noslip(adiabatic),
OPipe2=noslip(adiabatic),
YPart=noslip(adiabatic),
Outlet1=fixedMassOutlet(mdot=-1027.8 lbm/s),
Outlet2=fixedMassOutlet(mdot=-1027.8 lbm/s)
>

The names of the boundaries specified on the left-hand sides of the declarations above must match those defined in
the .vog file for the simulation. In the .vog file, each boundary name is identified with a set of boundary faces on
the mesh which comprise the boundary. The corresponding boundary condition specified on the right-hand side of the
boundary condition declaration is applied to all faces that comprise the boundary. During the grid generation process,
it is important that all faces on the boundary of the domain be assigned to a boundary name. Should any faces not be
included in a boundary name group, the code has no way of specifying the boundary conditions for those faces, and
will terminate due to an insufficient problem specification. The types of boundary conditions supported in Stream are
described in the following sections.

10.3.1 extrapolatedPressureOutlet
This outlet boundary condition is appropriate for compressible flow problems where the flow is supersonic at the outlet.
An example of its usage is shown below:

Outlet=extrapolatedPressureOutlet

There are no options required by this boundary condition. Velocity, pressure, temperature, and turbulence quantities
are all extrapolated from the center of the cell adjacent to the boundary face to the boundary face center. Density is then
computed from the equation-of-state. Due to the use of zeroth-order extrapolation, it is prudent that outlet boundaries
using this boundary condition be placed in a location where streamwise gradients are small, as well as to ensure that
the grid is highly orthogonal, with the line from any boundary cell center to its respective boundary face center very
closely aligned with the boundary normal vector.

10.3.2 fixedMassOutlet
This outlet boundary condition is appropriate for both incompressible and compressible flow problems. Two options
are available. Using the mdot option, the total mass flow rate through the boundary can be specified directly, as shown
below:

Outlet=fixedMassOutlet(mdot=-10.0 kg/s)

Alternately, using the massFlux option, the mass flow rate per unit area over the boundary can be specified, as follows:

Outlet=fixedMassOutlet(massFlux=-2.0 kg/m/m/s)

Internally, Stream operates using only mass fluxes for the boundary faces. When the boundary mass flow rate is specified
using the mdot option, the equivalent massFlux is computed automatically by dividing the specified value by the total
boundary area. By convention, a negative value indicates mass flow out of the domain. Positive values for this
boundary condition should not be used. One may specify any units that are consistent with the units shown above,

68 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

and conversion to SI units will be handled internally by the code. For incompressible flows, density, pressure, and
turbulence quantities are extrapolated from the center of the cell adjacent to the boundary face to the boundary face
center. For compressible flows, pressure, temperature, and turbulence quantities are extrapolated and then density is
computed from the equation-of-state. The velocity on any boundary face is then computed directly from the mass flux
and the local face density, and is assigned to be in the direction of the local face outward normal vector.

10.3.3 fixedPressureInlet
This inlet boundary condition is appropriate for both incompressible and compressible flow problems, and is designed
to hold either a specified pressure or a specified mean pressure over the boundary. The velocity at the boundary faces is
obtained via extrapolation from the adjacent cell centers in the interior of the domain. For incompressible simulations,
one should specify the value of the pressure or the mean pressure. For compressible simulations, the temperature at the
boundary must also be specified using any of the available scalar specification forms detailed here . If the simulation
involves turbulent flow, one should also specify the turbulence intensity I, and the turbulent to laminar viscosity ratio
muRatio. These two quantities may only be assigned as constant values. Profiles for I and muRatio are not currently
available. Inlet values for the primitive turbulence variables variables k, omega, and epsilon are then computed based
on the following equations:

𝑘 = −3

2
(�⃗� · �⃗�)𝐼, 𝜔 =

𝜌𝑘

𝜇lam · 𝜇ratio
, 𝜖 =

𝐶𝜇𝜌𝑘
2

𝜇lam · 𝜇ratio

If the simulation contains multiple species, one should also assign the species mass fraction values using the mixture
option. When using the mixture option, one need not list values for which the species mass fraction is zero, as this will
be automatically handled by the code.

Listing 15: fixed pressure inlet, incompressible, turbulent

Inlet=fixedPressureInlet(p=101325.0 Pa, I=0.03, muRatio=100.0)

Listing 16: fixed mean-pressure inlet, compressible, turbulent, multi-
species

Inlet=fixedPressureInlet(pMean=101325.0 Pa, T=300.0K, mixture=[H2=0.5, O2=0.5],
I=0.03, muRatio=100.0)

10.3.4 fixedPressureOutlet
This outlet boundary condition is appropriate for both incompressible simulations and compressible simulations where
the flow always remains subsonic on the outlet boundary. There are two types of pressure constraints which may be
employed for this boundary condition. Since there is no default value, one must explicitly specify either one of the
constraints. With the first constraint, a constant pressure is specified and maintained on all boundary faces of the mesh
comprising the boundary.

Listing 17: constant pressure

Outlet=fixedPressureOutlet(p=202650 Pa)

With the second type of constraint, a mean pressure is specified and maintained on the boundary. This is implemented
internally within the code by extrapolating the current pressure field from the cells next to the boundary to the boundary
faces and then adding the same constant pressure correction value to all boundary faces to achieve the desired mean
value.

10.3. Appendix: Boundary Conditions 69

Loci-Stream, Release 2.1.9

Listing 18: mean pressure

Outlet=fixedPressureOutlet(pMean=101320 Pa)

All other solver variables including velocity are extrapolated from the interior of the domain to the boundary. By
default, this extrapolation will not allow flow to come into the domain through any face on the boundary. In certain
instances, such as the case where one is using this boundary condition to approximate a far-field boundary of nearly
constant pressure, one may wish to allow entrainment (flow coming into the domain from outside the domain) to occur.

Listing 19: entrainment

Outlet=fixedPressureOutlet(p=202650 Pa, entrainment)

The entrainment option can be used with both the p= and pMean= options. In general, one will only want to use
this option when there is relatively weak recirculation through the boundary. For internal flow problems, if one finds
any recirculation zones in the vicinity of the outlet boundary, it is preferable to re-grid the domain in such a way (by
including a part of a downstream component, for example) as to eliminate recirculation at the outlet, which otherwise
could be a cause of numerical instability preventing the simulation from achieving convergence.

10.3.5 incompressibleInlet
This boundary condition is used only for incompressible flow simulations. For laminar flow simulations, one need only
specify the velocity, either directly via the velocity value (using any the of methods detailed here) or indirectly via the
mass flux or mass flow rate through the boundary. The usage of these three methods is shown below:

Listing 20: incompressible, laminar

Inlet=incompressibleInlet(v=[1.0 m/s, 0.5 m/s, 0.1 m/s])
Inlet=incompressibleInlet(massFlux=0.5 kg/m/m/s)
Inlet=incompressibleInlet(mdot=2.7 kg/s)

For turbulent flow simulations, one must also specify the turbulence quantities at the inlet using the k= and omega=
options using any of the methods for scalar values detailed here.

For compatibility with Chem, the option prescribed= is also allowed. With this option, one can specify a data file in
which the velocity, pressure, temperature, and turbulence quantities are specified at several control points. Values are
computed at the centers of the faces on the boundary via a generalized interpolation of the data specified at the control
points. For the incompressibleInlet boundary condition, only the velocity and turbulence quantities (for turbulent
simulations) are used from the data file, since this is the only required information for incompressible flow.

Listing 21: prescribed BC

Inlet=incompressibleInlet(prescribed="bc.dat")

Any name may be specified for the boundary condition file. If one specifies no name between the quotes, the default
file name bc.dat is used.

10.3.6 noslip
The noslip boundary condition should be used for all solid surfaces in viscous flow simulations. For compressible
flow simulations, it is IMPORTANT to note that there is no default method that is automatically selected for heat-
transfer at the boundary. Thus, one must explicitly assign either an adiabatic, specified temperature or specified heat
flux conditions as an option. The following sections detail all the available options for the no-slip boundary condition.

70 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Wall Functions

The default mode of operation is to compute wall viscous stresses and heat transfer using the standard gradient opera-
tions with information in the vicinity of the wall. This is the so-called gridding down to the wall approach, where wall
functions are not employed by default. When using this mode, one should ensure that 𝑦+ < 3‘ for accurate viscous
stresses and heat fluxes. For incompressible flow, because the energy equation is not solved, if one is gridding down to
the wall, there are no options required for the no-slip boundary and the boundary condition can be used in either of the
following ways:

Listing 22: no-slip, incompressible

Wall=noslip
Wall=noslip()

Wall functions can be activated by using the wallFunction option.

Listing 23: wall function

Wall=noslip(wallFunction)

The only wall function model currently available is that of [NiNe2003]. It is important to note that wall functions are
enabled on a patch-by-patch basis. Only boundary patches with the wallFunction option will employ wall functions,
while the remaining no-slip surfaces without the wallFunction option will employ the default approach of gridding
down to the wall.

Adiabatic Wall

For solid surfaces with no heat flux through any part of the boundary, one should use the adiabatic option. If one is
gridding down to the wall, one would specify the boundary condition as follows:

Listing 24: adiabatic wall

Wall=noslip(adiabatic)

Wall functions can also be enabled for adiabatic boundaries, in which case one need only tack on the wallFunction
option.

Specified Temperature at the Wall

For solid surfaces with a fixed temperature distribution, one should use the option T=, with any of the methods specified
here to assign the temperature distribution. Wall functions may also be used for boundaries with specified temperature
by tacking on the wallFunction option, in a manner like the following:

Listing 25: specified temperature

Wall=noslip(T=500 K, wallFunction)

For compatibility with Chem, the option Twall= is also supported. This option can also be used to specify a constant
scalar wall temperature value like the example above.

Specified Heat Flux at the Wall

For solid surfaces with a fixed heat flux (𝑊
𝑚2) through the wall, one should use the option qwall= in the following

manner (default units shown):

10.3. Appendix: Boundary Conditions 71

Loci-Stream, Release 2.1.9

Listing 26: specified heat flux

Wall=noslip(qwall=1024 W/m/m)

A single constant heat flux value is the only means of specification currently supported. Any units consistent with 𝑊
𝑚2

may be used. By convention, the value specified is defined to be the heat flux from the fluid domain to the wall.
Thus, one should specify a negative value to have positive heat transfer from the wall to the fluid. At the current time,
wall functions cannot be used with the specified heat flux condition, so one must use this option only when gridding
down to the wall.

Specified Wall and Reservoir Conditions

If one wants to approximate the condition in which a wall of known effective thermal resistance separates the fluid
domain from a reservoir held at constant temperature, one can specify the wall and reservoir conditions in the following
manner (default units shown):

Listing 27: specified wall and reservoir conditions

Wall=noslip(Treservoir=400 K, Rwall=10.0 m*m*K/W)

At the current time, only constant value specifications for both Treservoir and Rwall are supported. With the
supplied reservoir temperature and wall effective thermal resistance, the code will perform a 1-D wall heat-transfer
balance to compute the wall temperature that balances the flux leaving the fluid domain with that entering the reservoir.
At the current time, wall functions cannot be used with this specification, so one must use this option only when gridding
down to the wall.

10.3.7 slip
The slip boundary condition should be used for all solid surfaces in inviscid flow simulations. All flow variables are
extrapolated to the boundary from the cell values in the interior of the domain. There are no options required for this
boundary condition.

Listing 28: slip

Wall=slip

10.3.8 subsonicInlet
This boundary condition is only used for compressible flow simulations. For numerical stability purposes, the flow
should remain subsonic on the boundary during the entire simulation. Pressure on the boundary is obtained by ex-
trapolation from the interior of the domain. Density on the boundary is computed from the equation of state once the
temperature at the boundary is known. The velocity on the boundary may be specified either directly via the velocity
value (using any the of methods detailed here) or indirectly via the mass flux or mass flow rate through the boundary.
The usage of these three methods is shown below:

Listing 29: compressible, subsonic

Inlet=subsonicInlet(v=[0.5 m/s, 0.1 m/s, 1.0 m/s])
Inlet=subsonicInlet(massFlux=0.5 kg/m/m/s)
Inlet=subsonicInlet(mdot=2.7 kg/s)

Note that unlike for incompressibleInlet, the explicit specification of the boundary velocity via the v= option does
not result in a fixed-mass inlet because the density at the boundary will evolve during the simulation. The temperature on
the boundary must also be specified with the T= option using any the of methods detailed here for scalar specification.
For turbulent flow simulations, one must also specify the turbulence quantities at the inlet with the k= and omega=

72 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

options, again using any of the methods detailed here for scalar specification. If the simulation contains multiple
species, one should also assign the species mass fraction values using the mixture= option. When using the mixture=
option, one need not list values for which the species mass fraction is zero, as this will be automatically handled by the
code.

Listing 30: compressible, turbulent, multi-species, subsonic

Inlet=subsonicInlet(mdot=2.7 kg/s, T=400 K, k=0.05 m*m/s/s, omega=500.0 1/s,
mixture=[H2=0.5, O2=0.5])

For compatibility with Chem, the option prescribed= is allowed. With this option, one can specify a data file in
which the velocity, pressure, temperature, mixture species mass fractions and turbulence quantities are specified at
several control points. Values are computed at the centers of the faces on the boundary via a generalized interpolation
of the data specified at the control points. For the subsonicInlet boundary condition, the only quantity not used
from the data file is the pressure because pressure is extrapolated from the interior of the domain.

Listing 31: prescribed BC

Inlet=subsonicInlet(prescribed="bc.dat")

Any name may be specified for the boundary condition file. If one specifies no name between the quotes, the default
file name bc.dat is used.

10.3.9 supersonicInlet
This boundary condition is only used for compressible flow simulations. For numerical stability purposes, the flow
should remain supersonic on the boundary during the entire simulation. The velocity on the boundary may be specified
either directly via the velocity value (using any the of methods detailed here) or indirectly via the mass flux or mass
flow rate through the boundary. The usage of these three methods is shown below:

Listing 32: compressible, supersonic

Inlet=supersonicInlet(v=[0.5 m/s, 0.1 m/s, 1.0 m/s])
Inlet=supersonicInlet(massFlux=0.5 kg/m/m/s)
Inlet=supersonicInlet(mdot=2.7 kg/s)

The temperature and pressure on the boundary must also be specified with the T= and p= options, respectively. Tem-
perature may be specified using any the of methods detailed here for scalar specification, however, at the current time
only a single constant value may be specified for pressure. For turbulent flow simulations, one must also specify the
turbulence quantities with the k= and omega= options, again using any of the methods detailed here for scalar specifi-
cation. If the simulation contains multiple species, one should also assign the species mass fraction values using the
mixture= option. When using the mixture= option, one need not list values for which the species mass fraction is
zero, as this will be automatically handled by the code.

Listing 33: compressible, turbulent, multi-species, supersonic

Inlet=supersonicInlet(mdot=2.7 kg/s, p=202650 Pa, T=400 K, k=0.05 m*m/s/s,
omega=500.0 1/s, mixture=[H2=0.5, O2=0.5])

For compatibility with Chem, the option prescribed= is also allowed. With this option, one can specify a data file
in which the velocity, pressure, temperature, mixture species mass fractions and turbulence quantities are specified at
several control points. Values are computed at the centers of the faces on the boundary via a generalized interpolation
of the data specified at the control points. For the supersonicInlet boundary condition, all entries from the data file
are used since no information is extrapolated from the interior to the boundary for supersonic flow. The prescribed=
option is used in a manner shown below:

10.3. Appendix: Boundary Conditions 73

Loci-Stream, Release 2.1.9

Listing 34: prescribed BC

Inlet=supersonicInlet(prescribed="bc.dat")

Any name may be specified for the boundary condition file. If one specifies no name between the quotes, the default
file name bc.dat is used.

10.3.10 Symmetry
This boundary condition is used where one desires to enforce a zero normal gradient condition at the boundary. This
includes symmetry boundaries in 3-D simulations where the flow is symmetric about the boundary. For 2-D simu-
lations, flow variables are only a function of two of the coordinate directions. Grid boundaries with normal vectors
parallel to the third coordinate direction should be assigned as symmetry so the flow solution will not vary in this third
direction. As there are no options required for this boundary condition, it is generally used as follows:

Listing 35: symmetry

Boundary=symmetry

10.3.11 totalPressureInlet
This boundary condition can be used for both incompressible and compressible flow and is designed to hold a single
fixed value of total pressure at each of the faces on the boundary. The total pressure value is specified using the p0=
option. Temperature can be specified either directly with the T= option or indirectly with a total temperature via the
T0= option. If temperature is specified, any of the methods detailed here for scalar specification may be used. If
total temperature is specified, one may only use a single constant value. For turbulent flow simulations, one must
also specify the turbulence quantities with the k= and omega= options, again using any of the methods detailed here
for scalar specification. If the simulation contains multiple species, one should also assign the species mass fraction
values using the mixture= option. When using the mixture= option, one need not list values for which the species
mass fraction is zero, as this will be automatically handled by the code.

Listing 36: compressible, turbulent, multi-species

Inlet=totalPressureInlet(p0=202650 Pa, T0=400 K, k=0.05 m*m/s/s, omega=500.0 1/s,
mixture=[H2=0.5, O2=0.5])

For compressible flows with real fluids, one must also use the option incompressible. This is currently required since
the implementation of the total pressure inlet for compressible flow is based on equations which assume an ideal-gas
equation of state. Use of the incompressible option instructs the code to revert to the incompressible form of the
total pressure relations, which is a suitable approximation for low Mach number inlet flows.

74 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 37: compressible, turbulent, multi-species, real-fluid

Inlet=totalPressureInlet(p0=202650 Pa, T0=400 K, k=0.05 m*m/s/s, omega=500.0 1/s,
mixture=[H2=0.5, O2=0.5], incompressible)

If the simulation involves an incompressible flow, then one should not include the incompressible option, as the
incompressible form of the total pressure relation is automatically invoked by the code.

References

10.4 Appendix: Inviscid Fluxes and Gradient Limiting
Numerical treatment of the convection terms in the governing equations is of primary concern regarding both accu-
racy and stability of the computation. Selection of the convection scheme is made using the run control file variable
inviscidFlux.

inviscidFlux: SOU

Three numerical treatments are available, a first-order scheme (FOU), a second-order scheme (SOU) and a second-order
scheme intended for use in compressible flows with shock waves (SLAU2). The FOU and SOU schemes may be used for
both incompressible and compressible simulations. The SLAU2 scheme is only available for compressible simulations.
These schemes as well as the associated limiters are briefly detailed in the following sections.

10.4.1 First-Order Upwinding
This scheme is selected by specifying the value FOU for the inviscidFlux variable. With first-order upwinding, face
values for the dependent variables are obtained by a simple zeroth-order extrapolation from the upwind associated cell
center. Overall, this scheme results in a calculation which is first-order accurate in space. In general, one should not
use first-order upwinding for production runs where grid independent solutions are required as a prohibitive number
of grid cells would be required to achieve grid-independence. The generally dissipative nature of this scheme can be
advantageous for starting simulations from scratch with a poor initial condition if it is found that second-order schemes
have difficulty at start-up due to their relatively less dissipative nature.

10.4.2 Second-Order Upwinding
This scheme is selected by specifying the value SOU for the inviscidFlux variable in the run control file. With
second-order upwinding, face values for the dependent variables are obtained via a linear extrapolation from the upwind
associated cell center using both the value and gradient of the dependent variable. The linear extrapolation can be
limited for stability purposes so that no extrema are introduced by the extrapolation using the limiters discussed here.
This is generally a requirement for numerical stability when simulating flows on engineering meshes. Overall, this
scheme results in a calculation which is second-order accurate in space and is the preferred scheme for production
simulations that do not involve the presence of shock waves.

10.4.3 SLAU/SLAU2
The Simple Low-dissipation Advection-Upstream-splitting-method (SLAU) scheme should be used in compressible
simulations that contain shock waves. This scheme is selected by specifying the value SLAU or SLAU2 for the
inviscidFlux variable in the run control file. The scheme maintains formal second-order accuracy in regions away
from the shocks and degenerates to lower order in the immediate vicinity of the shocks to maintain monotonicity in
transitioning from the state on one side of the shock to the state on the other side of the shock. Similar to the second-
order upwinding scheme, the SLAU scheme also involves extrapolation operations which require the use of the limiters
discussed here. An example showing the specification of the SLAU scheme is shown below.

inviscidFlux: SLAU

10.4. Appendix: Inviscid Fluxes and Gradient Limiting 75

Loci-Stream, Release 2.1.9

A hybrid SLAU scheme is also available in Stream. This hybrid scheme is a blend of SLAU or SLAU2 with a vanLeer
Hanel Scheme. This allows for users to have more control of the numerical stability with simulations of flows that have
strong shockwaves. Note: To activate the hybrid SLAU scheme, the user must still specify either SLAU or SLAU2 for
the inviscidFlux variable in the run control file. To activate this scheme, add the slau_hybrid variable to the run
control file as shown below (default shown):

slau_hybrid: 0

The default value for this variable is 0 if slau_hybrid is not included in the run control file, this defaults to the
non-hybrid SLAU scheme that was set by the inviscidFlux variable. Other options for the variable are 1 and 2.
Specifying 1 only hybridizes the momentum flux and specifying 2 hybridizes both the momentum and energy fluxes.

10.4.4 Inviscid Flux for Turbulence Equations
There may be instances in which one may suspect that the turbulence equations are the source of nonlinear instabil-
ity within a time step. This could be due to any number of factors, including a poor initial condition or some flow
feature that takes the calibration of the turbulence models far out of the range of their intended validity. In such circum-
stances, in order to achieve stability, one may be required to bring the turbulence equations down to first-order. This is
accomplished using the run control file variable turbulenceInviscidFlux as shown below (default shown):

turbulenceInviscidFlux: SOU

The default value for this variable is SOU. One should attempt to use SOU whenever possible, as the use of FOU results
in excessively smeared shear layers, recirculation regions and separated flow features. Often it is sufficient just to use
FOU to get past a bad initial condition, and then restart to SOU.

10.4.5 Limiters
Limiters are used in conjunction with the second-order convection schemes discussed above as well as throughout the
code where projection of cell gradient information to the cell faces is required.

limiter: venkatakrishnan

The venkatakrishnan (default) option can be specified for the Venkatakrishnan limiter [Venk1993] to be used. The
barth option will activate the Barth limiter [BaJe1989]. If the value none is specified, no limiting will be performed.
The mlp option can be specified to activate a limiter that is based on the multidimensional limiting process [Zhan2018],
which is a limiter that is more robust than the Venkatakrishnan limiter for flows with shockwaves. A second, even more
tuned limiter [Zhan2018] for flows with shockwaves can be specified by using mlp_pw. This is an MLP limiter that uses
a pressure function to detect shockwaves and utilizes a larger stencil of cell and node information in order to determine
an appropriate limiter value. It is important to note that at the current time the only variable that controls limiting is
the limiter variable. Thus, the same limiter will be used for limiting the convection schemes as well as other terms in
the governing equations. Often, a user may think that they can use the value zero to select first-order upwinding. In
Stream, one should not use this option, as this turns off all limiting throughout the code. The proper way to select
first-order upwinding is with the variable inviscidFlux.

The venkatakrishnan, mlp, and mlp_pw limiters utilize something called the Venkatakrishnan limiting function.
This is a simple algebraic quantity that controls the sensitivity of the limiter. It has a parameter that can be set to tune
the sensitivity of the limiters for regions of smooth flows. The run control file variable for setting this parameter is Kl,
and an example of its specification is shown below (default shown).

Kl: 1.0

A rule of thumb for this variable is that if a limiter seems to be limiting the flow field in smooth regions and
causing disturbances in the smooth field, to try and increase this value. For very larger values of this variable, say
greater than 20, this essentially begins to turn off the limiter completely and will result in numerical instability and
eventual crashing of the code. The optimal value is often problem-dependent, but the default value is a good starting
choice most of the time.

76 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Table 4: Limiters available in Stream

Option Description Default
venkatakrishnan Standard Venkatakrishnan limiter Y
barth Barth-Jespersen limiter N
NB Nodal Barth-Jespersen limiter N
none No limiting on any equations N
mlp Multi-dimensional limiting process N
mlp_pw Multi-dimensional limiting process with pressure-weighting N

References

10.5 Appendix: Equation Options
The run control file has variables that govern the solution of each governing equation that is to be solved in a simula-
tion; these are the equation options variables. These variables are composed of an options list that generally contains
parameters that give the user control over the way that each governing equation is solved. These sections below discuss
the equation options for each governing equation in the base Stream code.

10.5.1 Momentum Equation
Options for controlling the solution of the momentum equations are specified using the momentumEquationOptions
variable in the run control file.

Listing 38: Specified Momentum Equation Options

momentumEquationOptions: <linearSolver=SGS, relaxationFactor=0.5, maxIterations=5>

If one wishes to use the default values, this line could alternately be specified as follows:

Listing 39: Default Momentum Equation Options

momentumEquationOptions: <>

It is generally best to explicitly specify the governing parameters in the options list as shown in the first form so that one
is actively aware of parameters involved in the simulation rather than having to remember the default values. This is
generally true of the other governing equations as well. The momentum equation options variable must be specified for
all simulations. The parameter linearSolver specifies the solver for the linearized momentum equation. All linear
solvers are supported except for HYPRE. The parameter relaxationFactor governs how much of the solution is kept
from the updated values after the solution of the linearized momentum equation at the current iteration. Valid values
are any number between zero (solution stays at previous iteration value) and one (solution set to values from the linear
solve). Using the parameter maxIterations, one can specify the maximum number of iterations that are performed
in the linear solver.

10.5.2 Pressure Correction Equation
Options for the pressure correction equation are set with the pressureCorrectionEquationOptions variable in the
run control file.

Listing 40: Specified Pressure Correction Equation Options (default val-
ues shown)

pressureCorrectionEquationOptions: <linearSolver=HYPRE, relaxationFactor=0.1,␣
→˓maxIterations=5>

10.5. Appendix: Equation Options 77

Loci-Stream, Release 2.1.9

The pressure correction equation options variable must be specified for all simulations. The parameter linearSolver
specifies the solver for the pressure-correction equation. All linear solvers described in the previous section are sup-
ported. For simulations involving anything other than idealized model problems on high-quality 2-D meshes, one will
generally want to use either the PETSC solver or the HYPRE solver. The parameter relaxationFactor governs how
much of the solution is kept from the updated values after the solution of the pressure-correction equation at the current
iteration. Valid values are any number between zero (pressure field not updated) and one (full pressure-correction value
update to pressure field). Using the parameter maxIterations, one can specify the maximum number of iterations
that are performed in the linear solver.

Two primary methods of solving the pressure correction equation are supported by Stream. The SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations) and the SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations-
Consistent) algorithms are available. These methods can be selected by specifying either SIMPLE or SIMPLEC in the
run control file using the pressureBasedMethod variable as shown below (default value shown):

pressureBasedMethod: SIMPLE

10.5.3 Pressure Equation
When using the SIMPLER method in the iterative solver stream one must also specify options for the pressure equation
using the variable pressureEquationOptions in the run control file in a manner like the following (default values
shown):

Listing 41: Specified Pressure Equation Options

pressureEquationOptions: <linearSolver=HYPRE, relaxationFactor=0.1, maxIterations=5>

Options for the pressure equation are identical to those for the pressure-correction equation detailed above.

10.5.4 Energy Equation
Options for the energy equation are specified using the variable energyEquationOptions in the run control file in a
manner like the following (default values shown):

Listing 42: Specified Energy Equation Options

energyEquationOptions: <linearSolver=SGS, relaxationFactor=0.5, maxIterations=5,
form=totalEnthalpy>

This variable need be specified only when running a compressible flow simulation. The linearSolver parameter
specifies the solver for the energy equation. All linear solvers described in the previous section are supported. The
next two options shown above are used in the same manner as described above for the momentum equation. The fourth
option shown above specifies the form of the energy equation to use. In Stream, one may specify either totalEnthalpy
for the total enthalpy form of the energy equation, totalEnergy for the total energy form of the energy equation, or
temperature for the temperature form of the energy equation. For the stream-piso solver, the temperature form of
the energy equation is not available.

10.5.5 Species Equation
For simulations involving multi-species mixtures, one must specify options for the species equations using the variable
speciesEquationOptions in the run control file in a manner like the following (default values shown):

78 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 43: Specified Species Equation Options

speciesEquationOptions: <linearSolver=SGS, relaxationFactor=0.5, maxIterations=5>

The linearSolver parameter specifies the solver for the species equation. All linear solvers described in the previous
section are supported. The remaining options shown above are used in the same manner as described above for the
momentum equation.

10.5.6 Turbulence Equations
For turbulent simulations, one must specify options for the turbulence equations using the run control file variable
turbulenceEquationOptions in a manner like the following (default values shown):

Listing 44: Specified Turbulence Equation Options

turbulenceEquationOptions: <linearSolver=SGS, relaxationFactor=0.5, maxIterations=5,
model=menterSST>

The linearSolver parameter specifies the solver for the turbulence equations. All linear solvers described in the
previous section are supported. The next two options shown above are used in the same manner as described above for
the momentum equation. Several different turbulence models can be chosen from using the model option. The section
on turbulence covers all the valid options that can be selected for the model option.

During the non-linear solution process at any time step, it is possible for the turbulence equations to return non-physical
values of the dependent variables k, the turbulent kinetic energy, and 𝜔, the specific dissipation rate. Should these non-
physical values not be limited, the simulation will immediately terminate due to floating-point exception. To prevent
this from occurring one must specify physical fallback values that can be assigned for cells with non-physical values
after the linear solve. The most robust way of continuing the simulation without causing un-necessary shock to the flow
field has been found to simply assign free-stream values in place of the non-physical values that occur. This can be done
using the run control file variables kFreestream and omegaFreestream as shown below (default values shown):

Listing 45: Freestream Values for Turbulence Equations

kFreestream: 1.0e-08
omegaFreestream: 10.0

While one may choose to accept the default values by not including these lines in the run control file, the preferred
approach is to set these values to those used in the initial conditions, because free-stream values are commonly used in
the initial condition for the variables k and 𝜔 and the location of the non-physical values of k and omega is sometimes
in the vicinity of the edge of the boundary layer where the flow is transitioning back to free-stream.

10.6 Appendix: Linear Solvers
Linear solvers are used in the stream code to solve the linearized equations at each iteration in the solution process at
a time step. Because the governing equations in both codes are solved in a sequential fashion (as opposed to a coupled
fashion in most density-based methods), one can specify a different linear solver for each of the governing equations in
the system of Navier-Stokes equations (momentum, pressure, energy, etc.) The five linear solvers which are currently
available are shown in the table below. To select a linear solver for a given equation, one must use the linearSolver
option in the corresponding equation options run control file variable. In order to facilitate the selection of linear solver
parameters for all governing equations, three global run control file variables can be specified as follows (with default
values shown):

10.6. Appendix: Linear Solvers 79

Loci-Stream, Release 2.1.9

Listing 46: Global Linear Solver Options

linearSolverTolerance: 1.0e-02
petscSolverName: GMRES
hypreSolverName: AMG

These global values are used as defaults for all governing equations, but they can be overridden. Below is an example
of overriding the global default for the momentum equation.

Listing 47: Overriding the Global Linear Solver Options for the Momen-
tum Equation

momentumEquationOptions: <linearSolver=SGS, relaxationFactor=0.5, maxIterations=5,
linearSolverTolerance=1.0e-03, petscSolverName=CG>

Local equation override is not currently supported for the hypreSolverName variable. As shown in the table below,
only the LSGS, PETSC and HYPRE linear solvers use the specified linear solver tolerance to assess convergence. For these
three solvers, the parameter maxIterations (specified for each governing equation) indicates the maximum number
of iterations that will be performed before the solver kicks out. In general, the specified linear solver tolerance may be
met before the maximum number of iterations is taken, in which case the solver terminates, declaring convergence. By
contrast, the SGS and FSGS linear solvers will always perform the maximum number of iterations specified because the
linear solver tolerance is not used.

Table 5: Available Linear Solvers

Solver Description Solver Names Supported Solver Tolerance Used
SGS Gauss-Seidel N/A No
FSGS Cache-Optimized Gauss-Seidel N/A No
LSGS Line Gauss-Seidel N/A Yes
PETSC PETSc Library GMRES, CG, BICG, CGS, BCGS Yes
HYPRE HYPRE Library GMRES, AM Yes

When using the HYPRE solver, the variable hypreStrongThreshold is used as follows (default value shown):

hypreStrongThreshold: 0.5

to set the value of the neighbor strong threshold, which has an important effect on the generation of the coarse multi-grid
levels. One should generally use the highest value possible for this variable (range 0.25- 0.95) while still maintaining
solution stability to substantially reduce CPU time. A starting value of 0.9 is recommended.

10.7 Appendix: Output Data
During the running of a simulation, there is a variety of information that is output by Stream which can be used for
monitoring the execution of the code as well as evaluating the flow solution. At any time during a simulation, if the
user wishes to generate a set of output data files, the user can issue the following command in a Linux terminal while in
the run directory: touch plot . This will cause the code to output data files as if the simulation had reached the next
output time step. The touch plot command is a Linux command that creates a file named plot in the run directory,
and Stream will scan the run directory between each time step and if it finds a file, it will generate the output data files
at the current time step and delete the file and continue to run.

80 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

10.7.1 Data Printed to Standard Output
When issuing the command to run the stream code, one should normally re-direct standard output and standard error to
a log file so that this information is saved for both real-time monitoring and later analysis should some problem occur
during execution of the code. One can do this by using a command like the following on the command line or in an
execution script:

mpirun -np 1 stream -q solution caseName >& caseName.log &

Upon examination of the log file, one will see several types of information, each detailed in the following sections.

Residual Data

The primary means of evaluating whether the code is operating properly is to examine the residual data for the run. A
residual line in the log file begins with the characters R: and is followed by the residual information. For the iterative
solver Stream, the format of the residual line is as follows:

R: n it uRes vRes wRes ppRes eRes kRes omegaRes yRes

The table below provides the definitions of the residual variables shown above. Refer to the last column in the table for
information which indicates the conditions under which the specific values will be output.

Table 6: Residual Variable Definitions

Variable Description Output
n Time step number Always
it Iteration number Always
uRes Momentum eq. x-component residual Always
vRes Momentum eq. y-component residual Always
wRes Momentum eq. z-component residual Always
ppRes Pressure-correction residual Always
eRes Energy eq. residual Compressible flow
kRes Turbulent kinetic energy eq. residual Turbulent flow
omegaRes Specific dissipation rate eq. residual Turbulent flow
yRes Species eq. maximum residual Multi-species mixture

For the solver, the residuals for all equations except pressure-correction are defined as the sum over all cells of the
absolute value of the corresponding residual for each of the cells in the domain. The cell residual is defined as the
right-hand side minus the left-hand side of the discretized cell equation. For the solver, the pressure correction residual
is computed as the sum over all cells of the absolute value of the discretized continuity equation for each of the cells in
the domain.

By default, the residuals sent to standard output are not normalized. To normalize the residuals based on characteristic
values pertinent to the problem at hand, one can use the run control file variable referenceValue as follows:

referenceValue: <L=2.0, rho=10.0, v=3.0, h=1000.0, k=0.01,omega=2000.0>

This variable defines the pertinent reference values which are used to normalize the total solution residuals that are
printed to standard output. Refer to the table below for a description of how these reference values are used. Note that
there is no residual reference value required for species mass fraction since these values always remain in the range of
zero to unity.

10.7. Appendix: Output Data 81

Loci-Stream, Release 2.1.9

Table 7: Residual Normalization Reference Values

Residual Variable Description
uRes, vRes, wRes 𝜌𝑣2𝐿2

ppRes 𝜌𝑣𝐿2

eRes 𝜌𝑣ℎ𝐿2

kRes 𝜌𝑣𝑘𝐿2

omegaRes 𝜌𝑣𝜔𝐿2

yRes 𝜌𝑣𝐿2

Regardless of whether the residuals have been normalized or not, when monitoring the residual values to determine
acceptable convergence of the simulation, use the following guidelines. For steady-flow simulations in which one is
using maxIterationsPerTimeStep=1, look for approximately three to four orders of magnitude drop in each
of the residuals from their maximum value in the simulation to indicate complete convergence. While running the
simulation past this level of convergence will continue to refine the solution, changes in the solution after this point will
generally be very minor. For unsteady simulations in which maxIterationsPerTimeStep>1 one should also look
for approximately three to four orders of magnitude drop in the residuals within each time step in order to eliminate the
iterative (SIMPLE) error in the solution and give the full time-accurate behavior of the temporal differencing scheme.

Regarding complete convergence of a simulation, it is important to note that the above levels of residual drop can
usually be achieved on model problems with ideal meshes. For non-model problems employing engineering meshes,
it is often possible to achieve only two orders of magnitude residual drop, sometimes even less. This apparent lack of
convergence is often caused by very localized problematic regions which may or may not impact a significant portion
of the problem domain. To evaluate the suitability of the convergence, one will have to resort to more sophisticated
measures such as a direct examination of the distribution of the cell residuals throughout the domain to determine the
extent of non-convergence.

Integrated Data

During the simulation, a variety of integrated data is also redirected to standard output based on the value of the run
control file variable print_freq, which is used as follows (default value shown):

print_freq: 100

If this line is not present in the run control file, then the default value will be used. Integrated data is output when the
expression (n mod print_freq)? = 0 evaluates to true, where n represents the time step number. There are two
forms of data that are output, integrated volume data and integrated boundary data. Integrated volume data will appear
as follows:

Listing 48: Integrated Volume Data

Integrated Volumetric Data (Complete Domain)
total volume = 6.2100e-07 m^3
total mass = 3.8311e-05 kg
total energy = -1.6704e+01 J
total enthalpy = -1.2421e+01 J
total species masses: [H2=1.0000e-06,O2=3.0000e-06,H2O=3.4311e-05]

These values represent the total amount of the specified quantity that is currently in the complete domain and are
computed based on a summation over all cells of the quantity in question. Total energy is defined as the total internal
energy of the flow and does not include the kinetic energy of the bulk fluid motion. The same applies to total enthalpy.
For incompressible flow simulations, these two quantities will be zero. In addition, for pure-fluid simulations, the total
species masses information will not be output.

Integrated boundary data is provided for each individual boundary condition patch as well as boundary condition patch
type. For example, for a two-dimensional incompressible lid-driven cavity flow simulation consisting of a box with a

82 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

sliding lid and three no-slip walls, one might have the following boundaryCondition variable in the run control file:

Listing 49: Sample Boundary Condition Specification for Integrated
Boundary Data

boundary_conditions:
<
BC_1=noslip, // left wall
BC_2=noslip, // right wall
BC_3=noslip, // bottom wall
BC_4=incompressibleInlet(v=-1.0 m/s), // lid
BC_5=symmetry, BC_6=symmetry // symmetry boundaries
>

In this case, one would see output for individual boundary condition patches such as the following:

Listing 50: Sample Specific Integrated Boundary Data

Integrated Boundary Data (BC_1)
total area = 1.0000e+00 m^2
mass transfer = 0.0000e+00 kg/s
energy transfer = 0.0000e+00 W
pressure force = -1.3380e-02 0.0000e+00 0.0000e+00 N
viscous force = 2.7312e-06 1.6104e-03 -3.1117e-11 N
total force = -1.3377e-02 1.6104e-03 -3.1117e-11 N

as well as for the collection of all no-slip boundaries such as the following:

Listing 51: Sample Boundary-Type Integrated Boundary Data

Integrated Boundary Data (noslip_BC)
total area = 3.0000e+00 m^2
mass transfer = 0.0000e+00 kg/s
energy transfer = 0.0000e+00 W
pressure force = -3.6021e-02 -3.2994e-06 0.0000e+00 N
viscous force = 3.6243e-05 -9.7420e-04 2.4459e-11 N
total force = -3.5985e-02 -9.7750e-04 2.4459e-11 N

It is important to note the conventions associated with these quantities. Mass transfer is defined as the mass flow
rate leaving the domain. Thus, for inlet boundaries, one should see a negative value for this quantity and a positive
value for outlet boundaries (assuming no major re-entrant flow occurs at the outlet). Energy transfer is defined as the
sum of the convective and diffusive internal energy transfer rates and is positive for a net transfer leaving the
domain through the boundary. Thus, for no-slip boundaries, the energy transfer value amounts to simply the wall
heat flux entering the boundary from the fluid. The pressure, viscous and total forces are defined as forces by the
fluid on the boundary.

10.7.2 Field Data Written to Output Directory
During the simulation, nodal field data interpolated from the cell center and boundary face data is written to the output
directory based on the value of the run control file variable plot_freq, which is used as follows:

plot_freq: 100

This variable is an optional variable in that there is no default value. If this variable is not included in the run control
file, there will be no field data written to file. Field data is output when the expression (n mod plot_freq)? = 0)
evaluates to true, where n represents the time step number. It is important to note that data is written at the beginning of

10.7. Appendix: Output Data 83

Loci-Stream, Release 2.1.9

the time step, so that the variables that are written represent the state of the simulation before the variables are updated
at the new time step. The directory to which field data is written is called /output and can be found in the directory
from which the simulation was initiated. This directory will be created if it is not already present. Field data is always
written for default variables and optionally written for non-default variables based on user specification with the run
control file variable plot_output, which is used in a manner like the following:

plot_output: k, omega, viscosityRatio, laminarViscosity

The table below summarizes many of the variables which can be output, including their status as either a default or non-
default variable. The default column in the table indicates variables that are automatically output when they applicable
to a simulation. Default variables do not need to be specified in the plot_output line in the run control file.

Table 8: Common Field Variable Output

Variable Description Default
a Speed of sound Yes
cfl CFL number No
cp Specific heat No
hResidual Energy eq. residual No
hResidualTT Energy eq. turn-over time No
k Turbulent kinetic energy No
kclip Turbulent kinetic energy clipped flag No
kconduct Thermal conductivity No
kineticEnergy Kinetic energy No
kResidual Turbulent kinetic energy eq. residual No
kResidualTT Turbulent kinetic energy eq. turn-over time No
laminarViscosity Material viscosity No
omega Specific dissipation rate No
omegaclip Specific dissipation rate clipped flag No
omegaResidual Specific dissipation rate eq. residual No
omegaResidualTT Specific dissipation rate eq. turn-over time No
mix Species mass fractions Yes
pg Gauge pressure Yes
pPrime Pressure-correction No
pResidual Pressure-correction eq. residual No
pResidualTT Pressure-correction eq. turn-over time No
r Density Yes
t Temperature Yes
v Velocity Yes
viscosityRatio Turbulent/laminar viscosity ratio No
vort_mag Vorticity magnitude No
vResidual Velocity eq. residual No
vResidualTT Velocity eq. turn-over time No

Should one wish to prevent the output of default variables (to save disk space), one may use the run control file variable
plot_output_exclusive in a manner like the following:

plot_output_exclusive: r, v

In this example, the variables density and velocity are the only variables that are output. One final run control file
variable of interest is the variable plot_modulo, which can be used to restrict the number of data files that are written
to the /output directory. This variable is used as follows (default value shown):

plot_modulo: 0

Valid values include any integral numeric value greater than or equal to zero. When field data is scheduled to be written

84 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

out according to the value of plot_freq described above, the following formats are used for the file names for scalar
and vector variables.

Listing 52: Field Data File Name Formats

variable_sca.extension_casename
variable_vec.extension_casename

If plot_modulo=0, the extension is given the same value as the time step number. In this case, unique file names
for each scalar and vector variable will be written to the /output directory for each time step for which data is re-
quested. Thus, for example, if one wanted to save data every 1000th time step for the entire simulation, one would
set plot_modulo=0 and plot_freq=1000. When the value of plot_modulo is greater than zero, the extension is
computed by the expression (extension=n mod plot_modulo). Thus, if one wanted to save data every 100th time
step for the most recent 1000 time steps, one would set plot_modulo=1000 and plot_freq=100. In this case, the
extension number would cycle between the values 100, 200, 300, 400, 500, 600, 700, 800, 900, 0 for the duration of
the simulation.

10.7.3 Boundary Data Written to Output Directory
In addition to field data, certain limited nodal boundary data is written to the /output directory for no-slip boundaries.
Consult the table below for a list of variables and their definitions. Boundary data output is also governed by the run
control file variables plot_freq and plot_modulo which are used in the same manner as described in the section
above for field data. Boundary data can also be written more frequently than field data by using the run control file
variable boundary plot_freq in a manner like the following (default value shown):

boundary_plot_freq: 10000000

The large default value effectively prevents this variable from affecting boundary output unless the user speci-
fies a more realistic value. As an example, assuming one had a value of plot_freq=100 and set a value of
boundary_plot_freq=75, boundary output would be scheduled both at every 100th time step as well as at every
75th time step. When boundary data is scheduled to be written out according to the value of plot_output and
boundary_plot_output, the following formats are used for the file names for scalar and vector variables:

Listing 53: Boundary Data File Name Formats

variable_bnd.extension_casename
variable_bndvec.extension_casename

Computation of the extension is done in the same manner as described above for field data using the variable
plot_modulo.

Table 9: Boundary Variable Output

Variable Description Type
pw Wall pressure Scalar
qdot Heat flux to the wall Scalar
tau Wall shear stress Vector
tw Wall temperature Scalar
yplus Wall 𝑦+ value scalar

10.7.4 Probe Data
Solution information at selected points in the domain can be monitored through time by using the run control file
variable probe. This variable allows one to place an arbitrary number of probes throughout the domain. The syntax
for the usage of this variable is as follows:

10.7. Appendix: Output Data 85

Loci-Stream, Release 2.1.9

Listing 54: Probe Variable Syntax

probe: <probe0=[0.0, 0.0, 0.0],
probe1=[0.5 inch, 0.5 inch, 0.5 inch],
probe2=[1.0 ft, 1.0 ft, 0.5 ft]>

where the vector location provided specifies the location of the probe. Units for the vector components can be optionally
provided so the user does not have to do manual conversion if the grid is provided in dimensions other than meters. If
units for a probe are not provided, the default unit of meters is assumed for the probe. Units may be specified differently
for each probe. Probe naming is up to the user, although the naming convention shown above is conventionally used.
For each probe, a data file with the name of the probe as prefix and extension .dat will be created in the directory
from which the simulation was initiated. In the above example, one would see files probe0.dat, probe1.dat, and
probe2.dat when data first begins to be generated. The format for data entries written to the probe files is as follows:

n t T p rho a v pos dist y0 y1 ...

Refer to the table below for the definitions of the data entries. Probe data is not computed at the exact location of the
probe via interpolation from nearby cells. The data at the center of the nearest cell to the probe is what is displayed in
the probe file. The center of this cell is located at the value pos, and the distance from the cell center to the requested
probe position is given by the value dist. While probe positions may be specified with arbitrary units, the values of
pos and dist are always expressed in meters in the probe output files.

Table 10: Probe Variable Definitions

Variable Description Type Units
n Time step number Scalar –
t Solution time Scalar s
T Temperature Scalar K
p Pressure Scalar Pa
rho Density Scalar 𝑘𝑔

𝑚3

a Speed of sound Scalar 𝑚
𝑠

v Velocity Vector 𝑚
𝑠

pos Nearest cell center Vector m
dist Distance from probe to cell center Vector m
y0 y1 ... Species mass fractions Scalar –

The frequency of data output to the probe data files is controlled by the run control file variable probe_freq, which
is used in a manner like the following:

probe_freq: 100

Probe data is output when the expression (n mod probe_freq)? = 0 evaluates to true. With the value above, one
would see data entries in the probe output files for time step 0 (initial condition) as well as time steps 100, 200, It
is important to note that data values corresponding to a given entry represent the state of the solution at the beginning
of the time step before the governing equations have been solved to update the solution. In other words, the data values
correspond to the solution at the end of the previous time step.

10.7.5 Turnover Time
The Stream solver provides an output that assists users in assessing any convergence-related problems they may en-
counter while running cases. The turnover time metric provides the user with a cell-to-cell assessment of the conver-
gence of each differential equation being solved.

The turnover time metric output variables use the following naming convention <governingEquation>ResidualTT.
Examples of the variables that are available in the Stream solver are shown in the table below. The turnover time metric

86 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

output variables are not output by default and must be specified in the plot_output variable.

Table 11: Turnover Time Metric Field Variable Output

Variable Description Module
pResidualTT` Pressure-correction eq. Main Code
vResidualTT Momentum eq. Main Code
tResidualTT Temperature eq. Main Code
hResidualTT Total Enthalpy eq. Main Code
eResidualTT Total Energy eq. Main Code
omegaResidualTT Omega eq. Main Code
kResidualTT Turbulent Kinetic Energy eq. Main Code
epsilonResidualTT Epsilon eq. Main Code

Consider the case of the turnover time scale metric for the pressure-correction equation.

TurnoverTimeMetric = log10

(︂
𝜌𝑉cell

𝑅𝑝
/𝜏ref

)︂
= log10

(︂
𝜏depletion

𝜏ref

)︂
Where 𝑉cell is the cell volume, 𝜌 is the cell density, 𝑅𝑝 is the residual of the integrated differential equation over the
cell (the subscript p simply denoting that it is the pressure-correction equation residual), and 𝜏ref is a characteristic
time scale of the flow, such as the flow-through time. A flow-through time is simply an estimate of the time it would
take for the fluid to flow through the domain. For many domains this can be estimated using the inlet velocity and the
domain length scale. This characteristic time scale value must be provided by the user in the run control file using
the turnoverTimeScale in the diagnostics variable as shown below. The units of the variable are assumed to be in
seconds.

diagnostics: <turnoverTimeScale=0.1>

The depletion timescale is defined as 𝜏depletion = 𝜌𝑉cell
𝑅𝑝

and is used here to simplify expressions.

The depletion time scale has units of seconds and can be thought of as the time it would take for the residual to
deplete the cell of its contents for the governing equation. In this case, it would be the time for the residual to deplete
the mass of the cell. The size of the residual is representative of the level of convergence that has been obtained for the
governing equation in a particular cell. If a governing equation in a cell is converged to machine-accuracy at any time
instant, the value of 𝑅𝑝 will be essentially zero, implying an infinite depletion time. The ratio of the depletion time to
the turnover reference timescale gives an intuitive sense of the level of convergence of the cell. The ratio should tend
towards very large values in the case of a highly converged cell.

Stream outputs the logarithm of the ratio defined by the TurnoverTimeMetric. Based on this definition, the table
below shows the correspondence between the convergence within a cell and the value of the turnover time metric
output variable. This sometimes is not possible for flows with complex geometries, but for a converged simulation
most of the cells in domain should have a value greater than zero.

Table 12: Rule-of-Thumb for Turnover Time Metric

Range Assessment
TurnoverTimeMetric < -1 Poor convergence
-1 < TurnoverTimeMetric < 0 Fair convergence
0 < TurnoverTimeMetric < 1 Good convergence
TurnoverTimeMetric > 1 Excellent convergence

One caveat is to remember that this variable is provided as a quick metric to estimate the level of convergence within the
simulation domain. In some instances, the characteristic reference timescale might vary within the domain such that

10.7. Appendix: Output Data 87

Loci-Stream, Release 2.1.9

in certain regions the timescale is very large and in others it is very small. If you use the largest timescale to normalize
the turnover time metric variable for a case like this, it can appear that the region with the much smaller timescale is
not well converged when it is converged.

10.7.6 Clip Surface Output
Clip surfaces in the form of clip planes or isosurfaces can also be output. The clip surface capability is enabled by
adding the variables clipFreq and clipSurfaces to the run control file file. The clipFreq variable provides an
integer which dictates the frequency of clip surface output. T the clipSurfaces variable gives a list of surface names
with clipping specifications. The clipping specification can either be a plane or an isosurface. For a clip plane the
specification requires a point on the plane and the normal vector of the plane. The iso-surfaces specifications gives a
variable assignment where the iso-surface will be computed. An sample of specifying clip surfaces in the run control
file is shown below:

Listing 55: Clip Surface Output Example

clipFreq: 25
clipSurfaces: < zcut10 = plane(point=[0,0,10],normal=[0,0,1]),

t1000 = isosurface(t=1000),
t0500 = isosurface(t=500)>

The sample above will generate cut surfaces every 25 timesteps where the cut surfaces include the surface named
zcut10 which is the plane formed by z=10, the t1000 isosurface where temperature is 1000 Kelvin and the t500
isosurface where temperature is 500 Kelvin. Note: the input for the isosurface command must be in terms the MKS
unit system. Also, any variable that was specified for plotting on the volume mesh (those listed in plot_output
or plot_output_exclusive will be written out for these surfaces). By default the cutting plane output will use
plot_modulo but this can be overridden by using the cut_modulo variable.

The clip surface output will be written to a directory in the /output directory with a naming scheme:
<model_name>_SURF.<cutname>, where <model_name> is the name of the run control file that was used to run
the simulation and <cutname> is the name of the clip surface that was defined in the clipSurfaces run control file
variable.

10.7.7 Extracting and Plotting Data
The section covering the plot_freq run control file option covers how to generate data for visualization in the output
directory. These files are annotated by the iteration number (modulo the plot modulo value). Once generated, the
extract program can be used to generate various files for post processing programs such as Paraview, FieldView,
EnSight, and TecPlot. The first argument to extract specifies which post processing software format to use. Other
options may follow that are specific to the particular post processor. The user then provides the problem name (this is
the name of the run control file file without the .vars extension), the iteration number to extract from, and a list of
variables to extract. The form of an extract command is:

Listing 56: Extract Command Syntax

extract -<package> [options] <problem name> <time step> <variable(s)>

Note that documentation of how to use extract can also be obtained by executing the command extract without any
arguments. post-processor option

Time-Series Data

If you wish to plot a series of solution across a set of time steps, you can use the stream_auto_extract utility located
in the /bin/ directory. The shell script will provide a usage example if it is called without any arguments.

88 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 57: Usage Example

./bin/stream_auto_extract --casename bump --output vtk --timesteps "1 1 10" --variables
→˓"v P r t"

In the above command the --casename option specifies the name of the run control file without the .vars extension.
The --output option can either be en or vtk. The --timesteps option specifies the range of time steps to extract
from. The first number is the starting time step, the second number is the increment, and the third number is the
ending time step. The --variables option specifies the variables to extract. These are the same variable names that
would be used when using the extract utility. The output files will be written to a directory with a name that will be
<casename>_<output>/. As an example, if the case name is bump and the output is vtk, the output directory will
be named bump_vtk/. For the en output option, this is an Ensight Gold format, and so the <casename>.case file will
be the file that should be opened in the generated output directory. For the vtk output option, the primary file to open
will have a name of <casename>.pvd.

Note the stream_auto_extract utility is a bash script and if your shell is not a bash shell, you may need to run the
script with the bash command. For example, if you are using the csh shell, you would run the script with the command
bash ./bin/stream_auto_extract.

10.8 Appendix: Restarting Cases
When running a simulation, it is often useful to permanently save solution data at selected time steps so that, if necessary,
the simulation may be re-initiated from one of these time steps. This data is referred to as restart data and consists of
the discrete numerical solution for the primitive variables at all cell centers in the domain as well as the mass flux at
all faces in the domain. Because all boundary condition data for the primitive variables is derived from cell-centered
data, boundary data located at the center of faces on the boundaries for the primitive variables is not included in the
restart data.

10.8.1 Restart Data
The directory where restart data is written is called /restart and can be found in the directory where the simula-
tion was initiated. The frequency at which restart data is written to file is governed by the run control file variable
restart_freq, which is used as follows:

restart_freq: 1000

This variable is an optional variable in that there is no default value. If this variable is not included in the run control
file, there will be no restart data written. Restart data is output when the expression (n mod restart f req)? =
0 evaluates to true, where n represents the time step number. As with output data, it is important to note that data is
written at the beginning of the time step, so that the information that is written to the restart files represents the state
of the simulation before the variables are updated at the new time step. No user input is required in terms of selecting
which restart data is required to be written. This is automatically determined by the code based on the type of simulation
that is being performed.

The run control file variable restart_modulo can be used to limit the amount of data that will accumulate in the
restart directory. This variable is used as follows (default value shown):

restart_modulo: 0

Valid values include any integral numeric value greater than or equal to zero. When restart data is scheduled to be
written out according to the value of restart_freq described above, the following formats are used for the file
names:

10.8. Appendix: Restarting Cases 89

Loci-Stream, Release 2.1.9

Listing 58: Restart File Name Format

variable_hdf5.extension

If restart_modulo=0, the extension is given the same value as the time step number. In this case, unique file names for
each variable will be written to the /restart directory for each time step for which data is requested. Thus, for example,
if one wanted to save restart data for every 1000th time step for the entire simulation, one would set restart_modulo=0
and restart_freq=1000. When the value of restart_modulo is greater than zero, the extension is computed by
the expression (extension = n mod restart_modulo). Thus, if one wanted to save data every 1000th time step
for the most recent 10000 time steps, one would set restart_modulo=10000 and restart_freq=1000. In this case,
the extension number would cycle between the values 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 0 for
the duration of the simulation. To perform a restart from saved data, place the restart time step number after the case
name in a manner like the following:

mpirun -np 1 stream -q solution caseName 1000 >& caseName.log &

In this example, the code will use the restart data from the files /restart/* hdf5.1000 for the simulation initial
condition rather than the initial condition information present in the run control file.

10.8.2 Restart Compressible Simulation from an Incompressible Simulation
There are certain situations in which it is sometimes helpful to run an incompressible simulation to establish a good flow
field from a poor initial condition before proceeding on to the final compressible simulation. While this procedure is in
general not necessary in practice, it can sometimes be used as a measure of last resort for getting a simulation started.
Because the data in the /restart directory for an incompressible simulation does not include a file for temperature,
one must use either the run control file variable initialCondition or initialConditionRegions to provide this
information upon restart in compressible mode. It is important that one include all required entries in the selected initial
condition variable to avoid code error handling (the code will complain that insufficient information has been provided
for a compressible initial condition and terminate), however, only the temperature values will be obtained from the
initial condition. All other values will be obtained from the incompressible simulation restart files. Upon restart, one
should see the following message in the log file:

Listing 59: Restart Message

WARNING: No temperature restart file. Using temperature initial
condition value from .vars file.

It is important when using this restart technique that one uses a temperature initial condition that in conjunction with the
pressure values in the pressure restart file results in a density value that is close to that of the incompressible simulation,
to avoid restart shock. It should also be noted that this technique can only be used to restart from an incompressible sim-
ulation to a pure-fluid compressible simulation. Restart to compressible mixture material simulations is not currently
supported.

10.8.3 Restarting a Turbulent Simulation from a Laminar Simulation
In some instances, if one suspects that the turbulence equations are having difficulty at start-up due to a poor initial
condition, it may be helpful to establish a good flow field by running a laminar flow simulation before proceeding on to
the final turbulent flow simulation. This can be accomplished by restarting in the normal manner, but because the restart
files for the turbulence quantities are not available from the laminar simulation, one must provide this information from
either the run control file variables initialCondition or initialConditionRegions. It is important to include
all required entries in the selected initial condition variables to avoid code error handling features, however, only the
turbulence quantities will be obtained from the initial condition. All other values will be obtained from the laminar
simulation restart files. Upon restart, one should see the following messages:

90 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 60: Restart Message

WARNING: No k restart file. Using k initial condition value from
.vars file.

WARNING: No omega restart file. Using omega initial condition value
from .vars file.

10.8.4 Restarting a BDF2 Simulation from a BDF Simulation
In certain instances, one may be required to restart a second-order BDF2 simulation from a first-order BDF simulation.
Such may be the case, for example, if one has a complex geometry where it is difficult to assign a good initial condition.
Due to the poor initial condition, it may be impossible for the solution to stabilize when using second-order time
integration. In this case, one would first run a certain number of time steps using first-order time integration, writing
out restart data at an appropriate point, and then restart using second-order time integration. No active input by the user
is required to execute this process, beyond the normal restart procedure, however, it is important to understand how the
code handles this situation.

In a normal BDF2 run, when restart data is written to file, data is written for both the current time step and well as the
previous time step, because this second-order time integration scheme employs two temporal solution levels. When a
BDF2 restart is being made from a BDF simulation, data at the previous time level is no longer available. To circumvent
this problem, the code assumes a zero temporal gradient condition upon restart and thus assigns the previous time level
data from the current time level data which is available. Temporal accuracy is thus lost at the initiation of the restart.

10.9 Appendix: Thermodynamic Data
Thermodynamic properties for the fluid components involved in a simulation are specified in a chemistry model file.
By convention, this file has the .mdl extension. To specify the model file for the simulation, use the run control file
variable chemistry model in a manner:

chemistry_model: air_5s17r

The code will look for the file air_5s17r.mdl. By default, the code first looks in the directory from which the
simulation was initiated. If the file is not found in this location, the code will attempt to look in the location defined by
the environment variable CHEMISTRY_DATABASE, if defined, which contains several chemistry models for commonly
used mixtures. If the file is not found in this location, the code will terminate with an error condition. The chemistry
model file is divided into two sections. The first section contains the thermodynamic data for each of the species involved
in the simulation. The second section contains a list of the chemical reactions among the species. Information in the
species section is always required, while the reaction section may be left empty for non-combusting flow simulations.
In this section, we describe the contents of the species section in detail. Discussion of the reaction section of the model
file is deferred to the section devoted to simulations with finite rate chemistry.

The species section contains the complete thermodynamic specification for each species in the simulation. In the
following, we first discuss the basic structure of the species section, followed by a discussion of the thermodynamic
models available for specifying the caloric equation of state for each species. The thermal equation of state for all
species is the ideal-gas law. Non-ideal-gas equations of state can be used by loading the real-fluids module. This is
discussed in the final section.

10.9.1 Species Definition
The definitions for all species in the simulation are contained within a single species={}; block within the model
file. An example of this section from the database model file air_5s17r.mdl looks as follows:

10.9. Appendix: Thermodynamic Data 91

Loci-Stream, Release 2.1.9

Listing 61: Example of a species section in a model file

species = {
O2: <mf = 0.22> ;
N2: <mf = 0.78> ;
NO ;
O ;
N ;
} ;

In this example, the file is declaring that there are five species in the simulation. Note that there is a minimum amount
of information required to define the species in this case since most information for the species can be derived from
pre-existing information in the species database. There are two distinct ways in which entries in the species section
are interpreted by the code. If the species name is followed by an = character, then any information in the system
database concerning this species is ignored.

The line below will specify the molecular mass, reference enthalpy, reference entropy, reference temperature, reference
pressure and default mass fraction for the species H2, and over-ride any pre-existing information for this species in the
database:

H2=<m=2.016, href=55749, sref=130751, Tref=300, Pref=101325, mf=1> ;

On the other hand, if the species name is followed by a : character, then the data specified is interpreted as augmenting
the pre-existing data for that species. For example, the following line will augment the currently existing information
for the species H2 with a polynomial definition for the specific heat over the temperature range 75K to 300K:

Listing 62: Augmenting the existing information for the species H2

H2:<cp=[75.0,poly(40.4475, -3.01156e-01, 2.35251e-03, -7.42018e-06,
8.35504e-09), 300.0]>

Multiple definition lines for a species can be present in the species section. For example, the complete definition for
the species H2 could look as follows:

92 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 63: Complete definition for the species H2

H2=<m=2.016> ;
H2:<href=55749, sref=130751, Tref=300, Pref=101325, mf=1> ;
H2:<cp=[75.0,poly(40.4475, -3.01156e-01, 2.35251e-03, -7.42018e-06,

8.35504e-09), 300.0]>

Regardless of how the species are chosen to be defined, whether using the existing information in the species database
and augmenting with additional data, or defining the species from scratch, it is important that all required thermody-
namic variable are defined. The table below lists the variables that are used to specify the thermodynamic properties
for each species.

Table 13: Variables for Species Thermodynamic Definition

Variable Description Units Notes
m Molecular Mass amu Automatically generated from database
n Linear component of 𝑒(𝑇) – Used in vibrational equilibrium model
theta_v Vibrational Temperature 𝐾 Used in vibrational equilibrium model
href Reference Enthalpy 𝐽

𝐾𝑚𝑜𝑙 Used to compute 𝐾𝐶

sref Reference Entropy 𝐽
(𝐾𝑚𝑜𝑙·𝐾) Used to compute 𝐾𝐶

Tref Reference Temperature 𝐾 Used to compute various thermodynamic properties
Pref Reference Pressure Pa Used to compute 𝐾𝐶

mf Mass Fraction – Not used
cp Curve Fit for Specific Heat 𝐽

(𝐾𝑚𝑜𝑙·𝐾) Vibration equilibrium used outside range

10.9.2 Creation of Model Files (.mdl files)
The chemistry model file (.mdl file) contains the complete thermodynamic specification for all the species in the
simulation. In addition, if the flow is reacting, a complete specification of the reactions among the species must be
provided. If one needs to create a new model file from scratch, the method of creating a model file from scratch is
presented below.

A user does not need to manually create a .mdl file for every species. If you are working on a multi-species simulation
and you need to create a .mdl file that contains many species, then you can use the following procedure to generate a
.mdl file that can be edited to suit your specific needs.

1. Find an appropriate Chemkin formatted reaction mechanism that contains the species that you want to use. It can
contain more species that what is needed, which is ok, because a subset of the output can be taken for use in a
case without needed to use the entire output.

2. Have a set of Chemkin formatted thermodynamic and transport property database files that contain information
about the species in your mechanism file.

The mechanisms are often paired with a set of thermodynamic and transport databases. These database files can
vary in size depending on the complexity of the mechanism because reactions involving more species require more
database entries. The utilities that Stream uses to create the species model file from the reaction mechanism, transport,
and thermodynamic data files require those files to be in the Chemkin format. Chemkin is a proprietary software for
modeling complex chemical kinetics, but the format is widely available on the internet.

An example of the transport data base file can be found here.

We have a Python utility named chemkin-converter that can take a Chemkin formatted mechanism along with
the thermodynamic and transport property database files and create a .mdl model file that includes species data and
optionally reaction data. The utility can also take Cantera formatted YAML mechanism file and create a .mdl model
file that includes species data and reaction data.

10.9. Appendix: Thermodynamic Data 93

http://akrmys.com/public/chemkin/CKm_inp.html.en
https://engine.princeton.edu/mechanisms/tran-dat/

Loci-Stream, Release 2.1.9

Below is a table of the arguments that can be passed to the script. If the script is run with no arguments, a list of the
arguments and usage instructions will be printed to the screen.

Table 14: chemkin-converter arguments

Argu-
ment

Description Op-
tional

Notes

case-
name

Desired name of .mdl file without the .mdl suf-
fix

No

mecha-
nism

Full name of a Cantera .yaml mechanism file Yes Without this, only the species section of the
.mdl file will be generated.

species_name_remapText file containing species name remapping in-
formation

Yes The left column is the species names in the .
mdl file and the right columns ss the desired
species name.

chemkin A flag for whether to use the raw Chemkin input
files to generate the species section of the .mdl
file

Yes If this flag isn’t used, the mechanism argu-
ment becomes a required argument.

trans-
port_tables

A flag for whether to generate a directory con-
taining curve fits for species viscosity and ther-
mal conductivity

Yes If this isn’t provided, the .tran file that the
tool generates should be used by the user.

The following sections below detail the two methods that utilize Chemkin and Cantera to generate the model file.

Creation of Model Files (.mdl) directly from Chemkin

One mechanism resource that has been used frequently is the UCSD website: http://web.eng.ucsd.edu/mae/groups/
combustion/mechanism.html. Download the Chemkin mechanism file and name it: chem.inp. Download the thermo-
dynamic database file and name it: therm.dat. Finally download the transport property file and name it: tran.dat.
In the Stream bin directory run the chemkin-converter script in whichever directory you downloaded the files men-
tioned above and pass it the argument of the name that the script should give to the output .mdl file that gets generated.

For example, if you have a directory that has the chem.inp, tran.dat, and therm.dat files, you can generate an
.mdl file that only has a species section by running the following command:

<StreamInstallDirPath>/bin/chemkin-converter --casename case --chemkin

This command will generate a file called case.mdl. Inside this file will be a list of all the species that were in the
mechanism in the standard model file form. The file will look like the image show below.

Fig. 1: Sample .mdl file showing the layout of the data contained the file.

The Chemkin formatted thermodynamic database files look like the following:

The Chemkin formatted transport property database files have the following structure:

94 Chapter 10. Appendices

http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html

Loci-Stream, Release 2.1.9

Fig. 2: Sample of a .therm file showing the general structure of data within it.

Fig. 3: Sample of a .tran file showing the general structure of the data within it.

If you need a reaction section in the .mdl file, you need to pass a Cantera formatted YAML mechanism file to the
script. If you have the chem.inp, tran.dat and therm.dat files already, you can generate a Cantera mechanism file
via the following steps.

1. Install Cantera on your machine using: pip install cantera. This will install a version of the Cantera Python
module on your machine. Additional tools are installed with this module, which you will now have access to.

2. Navigate to the directory containing the Chemkin files and run the following command: ck2yaml --input
chem.inp --transport tran.dat --thermo therm.dat --permissive This will generate an output
file called chem.yaml. This file will contain the species and reaction information that you will then provide
to the chemkin-converter script to generate the .mdl file.

3. Call the chemkin-converter script with the --mechanism argument and pass it the name as
follows: <StreamInstallDirPath>/bin/chemkin-converter --casename case --mechanism chem.
yaml --chemkin

Creation of Model Files (.mdl) starting from Cantera YAML mechanism file

If you already have a Cantera formatted YAML mechanism file, you can generate a .mdl file that contains the species
and reaction data using the following command:

<StreamInstallDirPath>/bin/chemkin-converter --casename case --mechanism chem.yaml

The Cantera option only supports generating both the species and reaction sections of the .mdl file. If you only want
the species section, you delete the reactions from the generated .mdl file.

10.9. Appendix: Thermodynamic Data 95

Loci-Stream, Release 2.1.9

10.9.3 Thermodynamic Models for Caloric Equation of State
The thermodynamic model for the caloric equation of state is selected using the run control file variable
thermodynamic_model. One may choose any one of the following three specifications:

Listing 64: Example of a thermodynamic model specification

thermodynamic_model: vibrational
thermodynamic_model: curve_fit
thermodynamic_model: adaptive

If this variable is not present in the run control file, then the adaptive model is chosen by default. The adaptive
model is not a model, but rather causes the code to use the curve_fit model if a 𝐶𝑃 is specified or the vibrational
model if a 𝐶𝑃 is not specified.

The default caloric equation of state model is vibrational equilibrium model, which is the internal energy based on the
assumption that the vibrational modes are in equilibrium. Assuming a harmonic oscillator for vibrational modes, the
internal energy of the ith species in the mixture is given by the following equation:

𝑒𝑖(𝑇) = (ℎ𝑓)𝑖 +𝑅𝑖

[︂
𝑛𝑖𝑇 +

𝜃𝑣,𝑖

𝜃𝑣,𝑖

(︁
𝑒

𝜃𝑣,𝑖
𝑇 − 1

)︁]︂
The variables 𝑛𝑖 and 𝜃𝑣,𝑖 are obtained from the species specification variables n and theta_v respectively. The variable
(ℎ𝑓)𝑖 which represents the heat of formation, is computed from the species specification variables href and Tref.

The caloric equation of state can also be specified by providing curve-fit functions for 𝐶𝑃 . The curve-fit is specified
over temperature intervals using a list of temperatures with curve-fit functions specified between the temperature inter-
vals. Currently two curve-fit functions are supported. The first is a fourth-degree polynomial given by the expression
poly(A,B,C,D,E) where,

𝐶𝑝 = 𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 + 𝐸𝑇 4

And the units are 𝐽
𝑚𝑜𝑙·𝐾 . The following example shows the usage of this form in the definition of a 𝐶𝑃 curve fit over

three temperature intervals for hydrogen:

Listing 65: Polynomial curve-fit specification

H2: <cp=[75.0, poly(40.4475, -3.01156e-1, 2.35251e-3, -7.42018e-6, 8.35504e-9),
300.0, poly(24.4709, 0.0289467, -6.46136e-05, 6.23552e-08, -2.09548e-11),
1000.0, poly(25.4069, 0.004967, -1.39243e-08, -1.76658e-10, 2.09483e-14),
5000.0]> ;

The second functional form, the Shomate form, is given by the expression shomate(A,B,C,D,E) where,

𝐶𝑝 = 𝐴+𝐵𝑡+ 𝐶𝑡2 +𝐷𝑡3 + 𝐸𝑡−2

and where 𝑇 (𝐾)/1000 and 𝐶𝑃 is in units of 𝐽
𝑚𝑜𝑙·𝐾 . The following example shows the usage of this form in the

definition of a 𝐶𝑃 curve fit for 𝐻2𝑂 from the NIST (National Institute of Standards and Technology) database, over
two temperature intervals, one from 500-1700 Kelvin and another from 1700-6000 Kelvin.

Listing 66: Shomate curve-fit specification

H2O: <cp=[500.0, shomate(30.09200,6.832514,6.793435,-2.534480,0.082139),
1700.0, shomate(41.96426,8.622053,-1.499781,0.098119,-11.15764),
6000.0]> ;

It should be noted that in both of the above specifications where 𝐶𝑃 is provided, by either the poly() or shomate()
functional forms, the vibrational equilibrium model will be used at the temperatures below the lowest temperature
interval where curve-fit data is not available, should it be necessary.

96 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

10.10 Appendix: Transport Properties
Transport properties are required for viscous flow simulations. These include both the laminar transport properties due
purely to molecular motion as well as the turbulent transport properties due to the turbulent motions of a flow.

The run control file variables for specifying transport properties are the transport_model and the diffusion_model
variables.

A high-level summary of the available options for the transport_model variable is given below:

Table 15: Transport Model Options

Option Description
none or module no transport model applied.
sutherland Sutherland’s law (with default properties for air).
powerLaw A Power law dependence on temperature.
const_viscosity Constant viscosity and thermal conductivity.
chemkin Use a CHEMKIN formatted transport file (.tran) for multi-component flow viscosity

and thermal conductivity properties.
transportDB Use a set of data files that have curve fits of viscosity, thermal conductivity, and diffu-

sion coefficients (*_con.dat, *_vis.dat, *_.dif.dat)
database Species p,T database using Wilke’s mixture rule.
tabularEoS Use a database of files that contain a tabular fit of transport data from the tabularEoS

module.

A high-level summary of the available options for the diffusion_model variable is given below:

Table 16: Diffusion Model Options

Option Description
const_diffusivity Constant diffusivity.
chemkin Use a CHEMKIN formatted transport file (.tran) for multi-component flow diffusion

coefficient properties.
laminarSchmidt Diffusivity based on viscosity and a specified Schmidt number.
unityLewisNumber Use the unity Lewis number assumption for computing the diffusion coefficient.
transportDB Use a database of files that contain a tabular fit of transport data from the tabularEoS

module.
default Selects the diffusion model based on the transport model: chemkin when Chemkin is

selected for transport_model, or laminarSchmidt otherwise.

The following sections go into more detail on the available options for the different specification types of transport
properties.

10.10.1 Laminar Transport Properties
Laminar transport properties include the laminar viscosity, the thermal conductivity, and the mass diffusivity for each
of the species for multi-species simulations. The run control file variable transport_model is used to specify the
form of transport properties desired. One must always include transport_model in the run control file because there
is no default value. Based on the value of this variable, other auxiliary variables may also be used. Several methods of
specification are possible, as detailed in the following sub-sections.

10.10. Appendix: Transport Properties 97

Loci-Stream, Release 2.1.9

Inviscid Flow

Inviscid flow is activated by setting the value of transport_model to none.

transport_model: none

No other transport property variables are required with this specification.

Constant Properties

Constant transport properties for viscous flow simulations can be specified in the run control file.

Listing 67: Constant transport property specification

transport_model: none
mu: 1.0e-04
kcond: 0.1

The variable mu is used to set the laminar dynamic viscosity value (units 𝑁 ·𝑠
𝑚2). This variable has no default value and

must be included in the run control file. The variable kcond is required only for compressible flows and is used to set the
thermal conductivity value (units 𝑊

𝑚·𝐾). This is also a required variable as there is no default value. For multi-species
simulations with constant laminar viscosity and thermal conductivity, one should specify the laminar mass diffusivity
using the laminar Schmidt number as follows:

laminarSchmidtNumber: 0.9

This variable need not be present in the run control file if the default value of 1.0 is desired.

Power Law Model

An option for specifying the viscosity and thermal conductivity variation with a power law dependence on temperature
is available. The power law model is a simple model that is defined by the following relation.

𝜇 = 𝜇𝑟𝑒𝑓

(︂
𝑇

𝑇𝑟𝑒𝑓

)︂𝑛

The required run control file variables for the power law model are as follows:

Table 17: Power Law Options

Variable Description
T_ref Reference temperature
power The exponent in the power law model
mu_ref Reference viscosity

Power law transport properties for viscous flow simulations can be specified in the run control file as follows.

Listing 68: Power law transport property specification

powerLawParam: <mu_ref=1.8e-5, T_ref=300, power=0.7>

10.10.2 Turbulent Transport Properties
The turbulent dynamic viscosity is computed directly from the turbulence models. Turbulent thermal conductivity and
mass diffusivity are computed using turbulent Prandtl and Schmidt numbers, respectively. The default values are shown
below along with the way to specify the variables in the run control file.

98 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 69: Default turbulent transport property values

turbulentPrandtlNumber: 0.7
turbulentSchmidtNumber: 0.95

These variables need not be present in the run control file if the default values are desired.

10.10.3 Multi-Species CHEMKIN Transport Properties
For multi-species simulations, a more detailed specification of the transport properties is required. A thermodynamic
model file (.mdl) file is required and a dataset containing transport properties is required. The methods for generation
of the thermodynamic model file as well as some of the transport properties databases is outlined here.

CHEMKIN Transport Properties

Specifying the chemkin option for the transport_model or diffusion_model run control file variables will result
in transport property data being obtained from a CHEMKIN formatted transport file (called *.tran). The method for
generating the CHEMKIN transport .tran file is outlined here.

Curve Fit Transport Properties

Specifying the transportDB option for the transport_model or diffusion_model run control file variables will
result in transport property data being obtained from a set of data files that have curve fits of viscosity, thermal conduc-
tivity, and diffusion coefficients (*_con.dat, *_vis.dat, *_.dif.dat). These files are expected to be in the same
directory as the run control file, and located in a folder named transport. The method for generating the curve fit
transport data files is outlined here , specifically the section regarding the --transport_tables flag passed to the
chemkin-converter utility.

10.11 Appendix: Velocity and Scalar Boundary Condition Specifica-
tion

There are several ways of specifying velocity and scalar values for the inlet boundary conditions detailed in:ref:Appendix
C <appendix_c>. The following sections on velocity and scalar boundary conditions apply specifically to the
incompressibleInlet, subsonicInlet, supersonicInlet and totalPressureInlet boundary conditions.

10.11.1 Velocity Boundary Conditions
Specification of the velocity is accomplished using the v= option. In the following sections, we will use
incompressibleInlet, although the forms shown apply identically to the other boundary condition types.

Constant Specification

With the constant velocity specification, the velocity for all grid faces on the boundary is assigned to the single specified
value. The following example shows the three ways of assigning a constant velocity of 1 ft/s in the x-direction.

Listing 70: Types of constant velocity specification

BC_1=incompressibleInlet(v=0.3048 m/s)
BC_1=incompressibleInlet(v=[1.0 ft/s, 0.0, 0.0])
BC_1=incompressibleInlet(v=polar(1.0 ft/s, 0.0 deg, 0.0 deg)

10.11. Appendix: Velocity and Scalar Boundary Condition Specification 99

Loci-Stream, Release 2.1.9

Functional Specification

A functional form of velocity specification is available where an arbitrary function of space and time can be provided
for each of the velocity components. The velocity at each grid face on the boundary is assigned by evaluating the
function at the coordinates of the face center. The way to specify the functional form is to set a boundary condition
option equal to a string that contains an expression, for example mdot=".145*t"where the function is inside the string
quotes. Valid variables that can be used in the function definition are x, y, z, and t. The time variable t is in seconds
and is the simulation time, and the spatial variables x, y, and z are the coordinates of the face center in meters. An
example of specifying a functional velocity that varies in space and time is shown below.

Listing 71: Functional velocity specification

BC_1=incompressibleInlet(v=function(vX="-1.0+3.0*x+2.0*x*y+4.0*x*y/z-0.01*t", vY="0.0",␣
→˓vZ="0.0"))

If any component (such as vX) is not specified, it is assumed to be zero. The mathematical functions are written using
common programming symbols as shown above. At the current time, units are not supported, so values are assumed to
be in m/s. Any of the run control file variable options that can be specified using a constant value can also be specified
using the functional form.Available functions are shown in the table below.

Table 18: Available Functions (expr can be any valid expression involv-
ing the space and time variables.)

Form Description
pow(expr,2) Raises expr to a power
sin() Sine (argument in radians)
cos() Cosine
tan() Tangent
asin() Arcsine
acos() Arccosine
atan() Arctangent
sinh() Hyperbolic sine
cosh() Hyperbolic cosine
tanh() Hyperbolic tangent
exp() Exponential
log10() Base 10 logarithm
ln() or log() Natural logarithm
sqrt() Square root

Cartesian Specification

With the Cartesian specification, one can specify a one-dimensional velocity profile with respect to a single coordinate
direction (either x, y, or z). The following example shows how this form is used.

Listing 72: Cartesian velocity specification

BC_1=incompressibleInlet(v=cartesian(file="file.dat"))

The data file specified can be of any name. The format for this data file is shown in the figure below. In the figure, the
variable n represents the number of data pairs in the file. A data pair consists of a xyz-coordinate and the components
of a vector velocity value. The variable f represents a profile flag which tells which coordinate direction to interpolate
with respect to. Use f=0 to interpolate with respect to the x-coordinate direction. In this case, the y and z coordinate
values in the file are ignored. Use f=1 to interpolate with respect to y and f=2 to interpolate with respect to z. The
velocity at each face on the boundary is assigned by interpolating within the file coordinate values and computing the
associated interpolated velocity value. If the coordinate of a grid face center falls outside the range of the coordinate

100 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

data in the file, then the limiting boundary values are used. For example, if f=0 and 𝑥face < 𝑥1 then 𝑣face = 𝑣1 and if
𝑥face > 𝑥n then 𝑣face = 𝑣n. Naturally, this implies that the coordinates of the points in the data file must be listed in
ascending order. Below is the format for cartesian velocity specification file.

𝑛 𝑓
𝑥1 𝑦1 𝑧1 𝑣𝑥,1 𝑣𝑦,1 𝑣𝑧,1
𝑥2 𝑦2 𝑧2 𝑣𝑥,2 𝑣𝑦,2 𝑣𝑧,2
𝑥3 𝑦3 𝑧3 𝑣𝑥,3 𝑣𝑦,3 𝑣𝑧,3
...

...
...

...
...

...
𝑥𝑛 𝑦𝑛 𝑧𝑛 𝑣𝑥,𝑛 𝑣𝑦,𝑛 𝑣𝑧,𝑛

Axisymmetric Specification

Like the Cartesian specification, one can also specify a velocity profile with respect to a radial coordinate. The following
example shows how this form is used.

Listing 73: Radial velocity specification

BC_1=incompressibleInlet(v=axisymmetric(file="file.dat"), referenceFrame=0)

As with the Cartesian specification above, the file specified can be of any name. The format for this axisymmetric
velocity specification file is shown below.

𝑛
𝑟1 𝑣𝑥,1 𝑣𝑦,1 𝑣𝑧,1
𝑟2 𝑣𝑥,2 𝑣𝑦,2 𝑣𝑧,2
𝑟3 𝑣𝑥,3 𝑣𝑦,3 𝑣𝑧,3
...

...
...

...
𝑟𝑛 𝑣𝑥,𝑛 𝑣𝑦,𝑛 𝑣𝑧,𝑛

In the figure above, the variable n represents the number of data pairs in the file. A data pair consists of a radial
coordinate and the components of a vector velocity value. The velocity at each face on the boundary is assigned
by interpolating within the file coordinate values and computing the associated interpolated velocity value. If the
coordinate of a grid face center falls outside the range of the coordinate data in the file, then the limiting boundary
values are used. For example, if 𝑟face < 𝑟1 then 𝑣face = 𝑣1 and if 𝑟face > 𝑟n then 𝑣face = 𝑣n. It is important that
the radial coordinates of the points in the data file be listed in ascending order. To compute the radial coordinate
values of the boundary faces, an axis must be established that defines the location of r=0. At the current time, this is
accomplished using the reference frame file. The format for this data file is shown below. To use the information in the
reference frame file, one must first put the following line in the run control file:

referenceFrameFile: file.dat

Note that any name may be used for the reference frame file and that there are no quotes surrounding the name as
there are in the boundary condition specifications above. In the figure below, the variable n represents the number of
reference frames defined in the file. Each reference frame includes an angular rotation rate Ω whose units are rad/s
and the starting and ending coordinates of the axis. The angular rotation rate is not used in the specification of the
axisymmetric profile but is used in other features of the code. The axis is defined as the directed line from the starting
coordinate to the ending coordinate. The magnitude of the axis specified in the data file is not important, as the axis is
internally normalized within the code. In addition, the reference frame numbering specified in the boundary condition
starts from zero. So, if one wishes to use the second reference frame in the data file for the boundary condition, specify

10.11. Appendix: Velocity and Scalar Boundary Condition Specification 101

Loci-Stream, Release 2.1.9

referenceFrame=1. The format for the reference frame file is shown below.

𝑛
Ω1

𝑋start,1 𝑌start,1 𝑍start,1 𝑋end,1 𝑌end,1 𝑍end,1
Ω2

𝑋start,2 𝑌start,2 𝑍start,2 𝑋end,2 𝑌end,2 𝑍end,2
...
...

Ω𝑛

𝑋start,𝑛 𝑌start,𝑛 𝑍start,𝑛 𝑋end,𝑛 𝑌end,𝑛 𝑍end,𝑛

10.11.2 Scalar Boundary Conditions
In this section we discuss the available methods for specifying scalar boundary condition values. Temperature will be
used in the examples below, however, the same specifications apply directly all other scalar variables. Specification
of the temperature is accomplished using the T= option. In the following examples, we will use subsonicInlet,
although the forms shown apply identically to the other boundary condition types.

Constant Specification

With the constant temperature specification, the temperature for all grid faces on the boundary is assigned to the single
specified value. The following example illustrates the use of this form:

BC_1=subsonicInlet(T=400 K)

Cartesian Specification

With the Cartesian specification, one can specify a one-dimensional temperature profile with respect to a single coor-
dinate direction (either x, y, or z). The following example shows how this form is used.

Listing 74: Cartesian scalar specification

BC_1=subsonicInlet(T=cartesian("file.dat"))

See the section above for a detailed discussion of the file format and interpolation methods used. While the file format
is like that for vector quantities, only a single scalar value for each interpolation data point is required, as shown below.

𝑛 𝑓
𝑥1 𝑦1 𝑧1 𝑇1

𝑥2 𝑦2 𝑧2 𝑇2

𝑥3 𝑦3 𝑧3 𝑇3

...
...

...
...

𝑥𝑛 𝑦𝑛 𝑧𝑛 𝑇𝑛

Axisymmetric Specification

Like the Cartesian specification, one can also specify a temperature profile with respect to a radial coordinate. The
following example shows how this form is used.

102 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Listing 75: Radial scalar specification

BC_1=subsonicInlet(T=axisymmetric("file.dat"), referenceFrame=0)

See the section above for a detailed discussion of the file format and interpolation methods used. While the file format
is like that for vector quantities, only a single scalar value for each interpolation data point is required, as shown below.
Specification of the reference frame is handled in an identical manner as described earlier.

𝑛
𝑟1 𝑇1

𝑟2 𝑇2

𝑟3 𝑇3

...
...

𝑟𝑛 𝑇𝑛

Functional Specification

A functional form of scalar specification is available where an arbitrary function of space and time can be provided.
This takes the same form as the functional velocity specification described earlier. The exception here is that whereas
in the prior section, velocity components needed to specified, for scalars, the function can be provided directly to the
run control file variable option as a string. The following example shows how this form is used.

Listing 76: Functional scalar specification

BC_1=subsonicInlet(T="300+0.01*x+0.02*y+0.03*z-0.01*t"))

10.12 Appendix: Solving the Pressure-Correction Equation
In the iterative solver stream, the most CPU intensive step in the solution algorithm is the solution of the pressure-
correction equation. Following a successful run of the code, one can examine the debug files in /debug under the
directory from which the simulation was initiated to see to top ten most expensive rules in the computation. For a
single process run, the debug file is simply called debug. For multi-process runs, the debug files are named debug.*,
where the wildcard represents the process number. For a typical run, especially multi-process runs, it is not uncommon
to observe the pressure correction solution using as much as 50% to 75% of the entire simulation CPU time. While
such usage may be justified for certain simulations, quite often one can reduce the computational expense of solving
the pressure correction equation without incurring any detrimental effects on convergence within the time step. Under
optimal conditions with the right selection of solver parameters, one may be able to reduce the expense of solving
the pressure-correction equation to no more than 25% to 30% of the total CPU time, which can result in a substantial
reduction is simulation turn-around time compared to using default solver parameters which are selected for robustness
purposes.

In Stream, the pressure-correction equation is a highly approximate equation whose sole purpose is to nudge the flow
solution back towards continuity satisfaction. Due to the approximate nature of the equation, it is often simply not worth
over-solving the equation because the additional information may not prove to be of any value. In fact, over solution of
the pressure-correction equation in the initial time steps of a simulation (when one has a bad initial condition) is a com-
mon cause of solution divergence, especially when using SIMPLE (as opposed to SIMPLEC). Thus, for several reasons,
one should attempt to find the optimal balance where the pressure-correction equation is being solved “enough”. To
find this optimal point, one can use a series of sample runs on either the actual problem or a similar problem and vary
the level of solution of the pressure-correction equation. Starting from the default solution parameters, if one reduces
the level of solution of the pressure-correction equation and sees no detrimental effect on the level of convergence of
the system of equations within the time step, then the new solution parameters are an improvement. One can repeat
this process until it is evident that the convergence of the system of equations within the time step is being affected in a
negative manner by the reduced work in the pressure-correction equation. At this point, one would have to increase the

10.12. Appendix: Solving the Pressure-Correction Equation 103

Loci-Stream, Release 2.1.9

number of iterations to make up for the loss of convergence to offset the lack of convergence due to the under-solution
of pressure-correction. This primary point is that there is a general trade-off between a larger number of cheap itera-
tions and a smaller number of expensive iterations when using Stream. With experience, the optimal location in this
trade-off will become evident.

10.13 Appendix: Space-Time Interpolation Module
The spaceTimeInterpolation module provides users with a general capability for specifying spatially and tempo-
rally varying boundary conditions for the various boundary types. This capability is enabled by inserting the following
loadModule directive into the run control file as shown below.

loadModule: spaceTimeInterpolation
{
... run control file content
}

The following sections discuss the space-time interpolation module and provide information on the run control file
variables required to perform simulations with the spaceTimeInterpolation module.

10.13.1 Space-Time Interpolated BCs
There are currently two supported boundary condition types that can utilize space-time interpolation: inlet and noslip.

Inlet Specification

This boundary condition is enabled by loading this module and specifying the directory that contains the interpolation
source files with the variable spaceTimeInterpolateFile. All inflow type boundary conditions that are assigned
the flag spaceTimePrescribed will receive the interpolated values. The data in the directory consists of HDF5 files
with a description file called data.info. Files in this directory are described with a format of filename:hdf5var
where filename is the name of the HDF5 file in the directory and hdf5var is the internal HDF5 dataset name. The
filename or dataset name may contain special # symbols which will be substituted for the time step number of the file
used for temporal interpolation. If multiple consecutive # characters are used, then the number will be padded to that
width using leading 0 characters. The # characters can be used in either the filename or hdf5var portion of the file
specifier. The data.info file contains the following variables shown in the table below.

104 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

Table 19: data.info File Contents

Vari-
able

Description

posi-
tions

The positions variable specifies the file that contains the spatial locations of the input points. Note that
the positions are expected to remain fixed in time and so the # symbol is not used in this file specifier.

initial-
Step

The initial step is the number of the first file in the time series.

last-
Step

The last step is the number of the final file in the time series.

stepIn-
cre-
ment

The step increment gives how much the step increases between input files.

start-
Time

The start time is the time associated with the initial step.

delta-
Time

The delta time is the temporal increment between steps.

Pambi-
ent

The reference pressure used for the gage pressure data files.

pg The file that describes the spatially varying gage pressure at all the points described in positions.
t The file that describes the spatially varying temperature at all the points described in positions.
v The file that describes the spatially varying velocity vector at all the points described in positions.
k The file that describes the spatially varying turbulent kinetic energy at all of the points described in posi-

tions.
w The file that describes the spatially varying turbulent specific dissipation (omega) at all the points de-

scribed in positions.
fspecies Any variable that starts with an “f” character is assumed to be a mass fraction file. If no mass fraction

files are specified, then the default mixture fraction specified in the chemistry mdl file will be used.

An example of a representative data.info file is given below. The data for this example was extracted from a separate
simulation using the clipSurfaces functionality. The files output from this facility using a clipFreq of 10 and run
for 600 timesteps were directly used by specifying the following data.info file:

Listing 77: Sample data.info file for inflow boundary condition

positions: pos.0:data
initialStep: 10
lastStep: 600
stepIncrement: 10
startTime: 0
deltaTime: 1e-3
Pambient: 101325
pg: pg_sca.#:data
t: t_sca.#:data
v: v_vec.#:data
k: k_sca.#:data
w: w_sca.#:data
f_Air: fH2_sca.#:data
fH2: f_Air_sca.#:data

As a reminder, the file above as well as the data files described in this file need to be located in a directory that is
provided via the run control file variable spaceTimeInterpolateFile. A sample of the required run control file
variables for specifying a space-time interpolation on an inlet boundary condition is shown below.

10.13. Appendix: Space-Time Interpolation Module 105

Loci-Stream, Release 2.1.9

Listing 78: Run control file sample for inflow boundary condition

// Boundary condition information
boundary_conditions:
<
BC_1=symmetry, BC_2=symmetry,
BC_3=subsonicInlet(spaceTimePrescribed)
>

// Data directory for subsonic inlet.
spaceTimeInterpolateFile: output/channel_SURF.xcut

The clip surfaces capability allows a user to place an arbitrary infinite cutting plane within the computational domain.
At the intersection of this plane with the CFD volume mesh, data is spatially interpolated using a cloud-of-points
interpolator. Data extraction for the plane is controlled during a simulation by using the variables plot_output and
plot_freq.

Noslip Specification

A feature for specifying temporally interpolated temperature and/or heat flux data for an arbitrary number of noslip
boundary conditions is available. Each boundary that will use this feature must be given the spaceTimeInterpolate
option in the boundary condition specification. An example showing the specification for the boundary conditions is
given below.

// Boundary condition information
boundary_conditions:
<

BC_1=symmetry, BC_2=symmetry,
BC_3=noslip(spaceTimePrescribed, Twall_dir=BC_3_Twall),
BC_4=noslip(spaceTimePrescribed, Twall_dir=BC_4_Twall),
// BC_4=noslip(spaceTimePrescribed, qwall_dir=BC_4_qwall)

>

For each boundary condition, the user must provide the name of a data directory using either the Twall_dir or
qwall_dir option. This directory needs to contain an informational file named data.infowhich describes the details
of the temporal interpolation process, as well as a series of hdf5 files, which contain the spatial temperature data at
each time-step marker. In the example shown above, the data.info file that is present in the BC_3_Twall directory,
which is used for boundary condition segment BC_3 is shown below.

Listing 79: Sample data.info file for noslip boundary condition with an
interpolated temperature

positions: pos.0:data
initialStep: 0
lastStep: 1000
stepIncrement: 200
startTime: 0
deltaTime: 1e-3
t: t_sca.#:data

With the specification given in this file, one must also supply the corresponding hdf5 files t_sca.0, t_sca.200,
t_sca.400, t_sca.600, t_sca.800 and t_sca.1000. Here, the suffix on the file names is the iteration num-
ber. In order to simplify the generation of these files, a simple translation utility called csv-to-hdf5, located in
<StreamInstallDir>/bin

106 Chapter 10. Appendices

Loci-Stream, Release 2.1.9

A specified heat flux boundary condition can be used instead of a temperature boundary condition. In the sample run
control file above, the heat flux boundary condition is specified by providing the qwall_dir option. The data.info
file for the heat flux boundary condition is shown below.

Listing 80: Sample data.info file for noslip boundary condition with an
interpolated heat flux

positions: pos.0:data
initialStep: 0
lastStep: 1000
stepIncrement: 200
startTime: 0
deltaTime: 1e-3
qwall: qwall_sca.#:data

CSV to HDF5 Utility

The csv-to-hdf5 utility is a simple utility that reads in a CSV file and writes out an hdf5 file. A sample CSV file is
shown below.

#Temperature Data
x(m), y(m), z(m), 0, 2, 4, 6, 8, 10
20.0, 0.0, 0.5, 300.0, 320.0, 340.0, 360.0, 380.0, 400.0
25.0, 0.0, 0.5, 325.0, 345.0, 365.0, 385.0, 405.0, 425.0
30.0, 0.0, 0.5, 350.0, 370.0, 390.0, 410.0, 430.0, 450.0
35.0, 0.0, 0.5, 375.0, 395.0, 415.0, 435.0, 455.0, 475.0
40.0, 0.0, 0.5, 400.0, 420.0, 440.0, 460.0, 480.0, 500.0

The first line of the CSV file must contain the column headers. Where the first 3 columns should just be the x(m),
y(m), z(m) entries. After those 3 column headers, must be a comma separated list of times. These are the time
markers for the data that will be used to interpolate the boundary condition. The remaining lines of the csv file contain
the data. The first 3 columns are the spatial coordinates of the data point, the remaining columns are the values of the
data at the time markers.

The columns must be in the order x, y, z, <values>. The x, y, and z columns are the spatial coordinates of the data
point, and the <values> is a comma separated set of values for the variable that is being spatio-temporally interpo-
lated. The utility will write out a set of hdf5 files with the following naming convention: [CSV file name without
extension]_sca.[iteration number]. Additionally a pos.0 file will be written out which contains the spatial
coordinates of the data points.

10.14 Appendix: Non-Inertial Reference Frame
A non-inertial reference frame can be specified in two ways: using a file-based input or through constant parameters.
The framework allows users to define the rotation axis, center, speed, and acceleration of the non-inertial frame to
account for dynamic effects in computational simulations.

10.14.1 File-Based Specification
Non-inertial reference frame data can be provided by specifying a filename in the nonInertialReferenceFrame run
control file variable. This file contains the time-dependent center of gravity, acceleration, and angular velocity. An
example specfication is shown below.

10.14. Appendix: Non-Inertial Reference Frame 107

Loci-Stream, Release 2.1.9

Listing 81: File-based non-inertial reference frame specification in the
run control file (.vars file)

nonInertialReferenceFrame: <file=reference_frame_data.dat>

The file must contain a series of time points with corresponding values for acceleration, center of gravity, and angular
velocity. The first time value must be zero. The format for each line in the file should follow this pattern:

Listing 82: File-based non-inertial reference frame data format

time accel_x accel_y accel_z cg_x cg_y cg_z omega_x omega_y omega_z

The framework automatically computes angular acceleration based on the provided angular velocity values using a
backward difference scheme.

10.14.2 Constant Parameter Specification
Alternatively, the non-inertial reference frame can be specified using constant parameters such as the rotation axis,
center, speed, and linear acceleration. A summary of the required parameters is provided below.

Parameter Description
rotAxis The axis of rotation as a 3D vector.
rotCenter The center of rotation as a 3D vector.
rotSpeed The angular speed of rotation (in radians per second).
accel The linear acceleration vector (in meters per second squared).

A sample of the constant parameter specification as it would appear in the run control file is shown below.

nonInertialReferenceFrame:
<
rotAxis= [0.0, 1.0, 0.0],
rotCenter= [0.0 m, 0.0 m, 0.0 m],
rotSpeed= 0.1 rad/s,
accel= [0.0 m/s/s, 0.0 m/s/s, -9.81 m/s/s]

>

10.14.3 Important Constraints
• Only one specification method (either file-based or constant parameters) can be used at a time. Specifying both

will result in an error.

• For the file option, at least two time points must be provided, and the first time point must be zero.

• For the constant parameters, rotational acceleration is assumed to be zero.

108 Chapter 10. Appendices

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

109

Loci-Stream, Release 2.1.9

110 Chapter 11. Indices and tables

BIBLIOGRAPHY

[Pope2000] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[Hart2016] J. Hart, “Comparison of Turbulence Modeling Approaches to the Simulation of a Dimpled Sphere,” Pro-
cedia Engineering, vol. 147, pp. 68-73, 2016.

[Stre2001] M. Strelets, “Detached Eddy Simulation of Massively Separated Flows,” in 39th AIAA Fluid Dynamics
Conference and Exhibit, Reno, 2001.

[MeKu2002] F. R. Menter and M. Kuntz, “Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated
Flow Behind Vehicles,” in Lecture Notes in Applied and Computational Mechanics, Springer, Berlin,
2002.

[GGSM2012] M. S. Gritskevich, A. V. Garbaruk, J. Schütze and F. R. Menter, “Development of DDES and IDDES
Formulations for the k-omega Shear Stress Transport Model,” Flow, Turbulence and Combustion, vol. 88,
pp. 431-449, 2012.

[LaSp1974] Launder, B.E.; Spalding, D.B. (March 1974). “The numerical computation of turbulent flows”. Computer
Methods in Applied Mechanics and Engineering. vol. 3, issue 2, pp. 269-289

[SLSY1995] Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z. (1995). “A new k- eddy-viscosity model for high Reynolds
number turbulent flows”. Computers & Fluids. vol. 24, issue 3, pp. 227-238

[MeFB1998] C. L. Merkle, J. Z. Feng and P. E. O. Buelow, “Computational Modeling of the Dynamics of Sheet
Cavitation,” in Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, 1998.

[HoAU2007] A. Hosangadi, V. Ahuja and R. J. Ungewitter, “Analysis of Thermal Effects in Cavitating Liquid Hydro-
gen Inducers,” Journal of Propulsion and Power, vol. 23, no. 6, pp. 1225-1234, 2007.

[GeZB2004] A. G. Gerber, P. J. Zwart and T. Belamri, “A Two-Phase Flow Model for Predicting Cavitation Dynamics,”
International Conference on Multiphase Flow, Yokohama, Japan, 2004.

[ScSS2008] G. H. Schnerr, I. H. Sezal and S. J. Schmidt, “Numerical investigation of three-dimensional cloud cavita-
tion with special emphasis on collapse induced shock dynamics,” Physics of Fluids, vol. 20, 2008.

[Pete2000] N. Peters, Turbulent Combustion, Cambridge University Press, 2000.

[ArCa1968] J. C. Armour, J. N. Cannon, Fluid flow through woven screens 1968.

[Cady1973] E. C. Cady, Study of Thermodynamic Vent and Screen Baffle Integration for Orbital Storage and
Transfer of Liquid Hydrogen, 1973.

[NiNe2003] R. H. Nichols and C. C. Nelson, “Application of hybrid rans/les turbulence models,” in Technical
Report, 2003.

[Venk1993] V. Venkatakrishnan, “On the Accuracy of Limiters and Convergence to Steady-State Solutions,” 31st
Aerospace Sciences Meeting, Reno, 1993.

111

Loci-Stream, Release 2.1.9

[BaJe1989] T. Barth and D. Jespersen, “The Design and Application of Upwind Schemes on Unstructured Meshes,”
27th Aerospace Sciences Meeting, Reno, 1989.

[Zhan2018] J. L. B. C. Fan Zhang, “Modified multi-dimensional limiting process with enhanced shock stability on
unstructured grids,” Computers & Fluids, vol. 161, pp. 171-188, 2018.

112 Bibliography

	Introduction
	Run Control File
	Grid File
	Execution Command

	Simulation of Laminar Incompressible Flows
	Example Case: Karman Vortex
	Boundary Conditions
	Initial Conditions
	Numerics
	Miscellaneous

	Helpful Guidance

	Simulation of Laminar Compressible Flows
	Example Case: Prandtl-Meyer Fan
	Boundary Conditions
	Initial Conditions
	Transport Properties
	Numerics
	Miscellaneous

	Helpful Guidance

	Simulation of Turbulent Flows
	RANS Models
	DES Models
	A Brief DES History
	Activating DES Mode

	Example Case: Backward Step
	Boundary Conditions
	Initial Conditions
	Transport Properties
	Numerics
	Output Variables

	Simulation of Cavitating Flows
	Cavitation Model
	Merkle Source Term Model
	Zwart Source Term Model
	Sauer-Schnerr Source Term Model
	Source Term Scaling Factor

	Control File Setup
	Boundary Conditions
	Initial Conditions
	Equation of State and Transport Properties
	Cavitation Equation Options
	Non-Condensable Gas Specification
	Output Variables

	REFPROP Tabulation Utility
	Liquid/Vapor Tabulation
	Saturation Tabulation
	Using Cavitation Tabulation Tool

	Simulation of Combusting Flows with Flamelet Method
	Flamelet Method
	Control File Setup
	Boundary Conditions
	Initial Conditions
	Transport Properties
	Flamelet Table Transport Properties
	Tabular Transport Properties
	Ideal-Gas Tabulation
	REFPROP Tabulation
	Custom Temperature Tabulation
	Flamelet Equation Options
	Output Variables

	Simulation with Overset Grids
	Overset Method
	Overview of the method
	Control File Setup
	Boundary Conditions
	Initial Conditions
	Component Geometry
	Component Motion
	Output Variables

	Creating the Overset VOG Mesh with Tags
	Known Issue with Overset Module & Hole Cutting
	Visualizing the iblank state of a simulation

	PIMPLE Module
	PIMPLE Algorithm
	Control File Setup
	Numerics
	Output Variables

	Porous Media Module
	Armour Cannon Cady (ACC) Mesh Model
	Numerically Determined Resistance (NDR) Mesh Model
	Control File Setup
	Screen Geometries
	Circular Screen
	Cylindrical Screen
	Box Screen

	Output Variables

	Appendices
	Appendix: Time Integration
	Integration Method
	Blended Crank-Nicholson Method

	Time Step Selection
	Number of Time Steps
	Time Step Convergence

	Appendix: Initial Conditions
	Uniform Initial Conditions
	Left and Right State Initial Conditions
	Initial Condition Regions
	Interpolated Initial Conditions

	Appendix: Boundary Conditions
	extrapolatedPressureOutlet
	fixedMassOutlet
	fixedPressureInlet
	fixedPressureOutlet
	incompressibleInlet
	noslip
	Wall Functions
	Adiabatic Wall
	Specified Temperature at the Wall
	Specified Heat Flux at the Wall
	Specified Wall and Reservoir Conditions

	slip
	subsonicInlet
	supersonicInlet
	Symmetry
	totalPressureInlet

	Appendix: Inviscid Fluxes and Gradient Limiting
	First-Order Upwinding
	Second-Order Upwinding
	SLAU/SLAU2
	Inviscid Flux for Turbulence Equations
	Limiters

	Appendix: Equation Options
	Momentum Equation
	Pressure Correction Equation
	Pressure Equation
	Energy Equation
	Species Equation
	Turbulence Equations

	Appendix: Linear Solvers
	Appendix: Output Data
	Data Printed to Standard Output
	Residual Data
	Integrated Data

	Field Data Written to Output Directory
	Boundary Data Written to Output Directory
	Probe Data
	Turnover Time
	Clip Surface Output
	Extracting and Plotting Data
	Time-Series Data

	Appendix: Restarting Cases
	Restart Data
	Restart Compressible Simulation from an Incompressible Simulation
	Restarting a Turbulent Simulation from a Laminar Simulation
	Restarting a BDF2 Simulation from a BDF Simulation

	Appendix: Thermodynamic Data
	Species Definition
	Creation of Model Files (.mdl files)
	Creation of Model Files (.mdl) directly from Chemkin
	Creation of Model Files (.mdl) starting from Cantera YAML mechanism file

	Thermodynamic Models for Caloric Equation of State

	Appendix: Transport Properties
	Laminar Transport Properties
	Inviscid Flow
	Constant Properties
	Power Law Model

	Turbulent Transport Properties
	Multi-Species CHEMKIN Transport Properties
	CHEMKIN Transport Properties
	Curve Fit Transport Properties

	Appendix: Velocity and Scalar Boundary Condition Specification
	Velocity Boundary Conditions
	Constant Specification
	Functional Specification
	Cartesian Specification
	Axisymmetric Specification

	Scalar Boundary Conditions
	Constant Specification
	Cartesian Specification
	Axisymmetric Specification
	Functional Specification

	Appendix: Solving the Pressure-Correction Equation
	Appendix: Space-Time Interpolation Module
	Space-Time Interpolated BCs
	Inlet Specification
	Noslip Specification
	CSV to HDF5 Utility

	Appendix: Non-Inertial Reference Frame
	File-Based Specification
	Constant Parameter Specification
	Important Constraints

	Indices and tables
	Bibliography

